I was reading the following post:
and also the isocpp page:
So I became curious, according to the Standard: What changes introduced in C++11 can potentially break a program written in C++98?
I was reading the following post:
and also the isocpp page:
So I became curious, according to the Standard: What changes introduced in C++11 can potentially break a program written in C++98?
Big one that stands out -- throwing exceptions from destructors.
In C++98 you can have programs that do this and work fine if you are careful.
In C++11 you will often have to explicitly declare the dtor noexcept(false)
.
Nice blog post here, on Andrzej's C++ blog.
In short, the following program used to run successfully in C++03 (under some definition of “success”):
struct S { ~S() { throw runtime_error(""); } // bad, but acceptable }; int main() { try { S s; } catch (...) { cerr << "exception occurred"; } cout << "success"; }
In C++11, the same program will trigger the call to
std::terminate
.
Here is another case related to destructors are noexcept(true) in C++11:
// A simple program that demonstrates how C++11 and pthread_cancel don't play
// nicely together.
//
// If you build without C++11 support (g++ threadkill.cpp -lpthread), the
// application will work as expected. After 5 seconds, main() will cancel the
// thread it created and the program will successfully exit.
//
// If you build with C++11 support(g++ -std=c++11 threadkill.cpp -lpthread),
// the program will crash because the abi::__forced_unwind exception will
// escape the destructor, which is implicitly marked as noexcept(true) in
// C++11. If you mark the destructor as noexcept(false), the program does
// not crash.
#include <iostream>
#include <unistd.h>
#include <string.h>
class sleepyDestructorObject
{
public:
~sleepyDestructorObject() //noexcept(false)
{
std::cout << "sleepy destructor invoked" << std::endl;
while(true)
{
std::cout << "." << std::flush;
sleep(1);
}
}
};
void* threadFunc( void* lpParam )
{
sleepyDestructorObject sleepy;
return NULL;
}
int main(int argc, char** argv)
{
pthread_t tThreadID;
pthread_create(&tThreadID, NULL, threadFunc, NULL);
sleep(5);
pthread_cancel(tThreadID);
pthread_join(tThreadID, NULL);
return 0;
}
Original reference: