These two functions seem equivalent to me. You can see that they accomplish the same goal in the code below, as columns c and d are equal. So when should I use one over the other?
Here is an example:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0, 10, size=(10, 2)), columns=list('ab'))
df.loc[::2, 'a'] = np.nan
Returns:
a b
0 NaN 4
1 2.0 6
2 NaN 8
3 0.0 4
4 NaN 4
5 0.0 8
6 NaN 7
7 2.0 2
8 NaN 9
9 7.0 2
This is my starting point. Now I will add two columns, one using combine_first and one using fillna, and they will produce the same result:
df['c'] = df.a.combine_first(df.b)
df['d'] = df['a'].fillna(df['b'])
Returns:
a b c d
0 NaN 4 4.0 4.0
1 8.0 7 8.0 8.0
2 NaN 2 2.0 2.0
3 3.0 0 3.0 3.0
4 NaN 0 0.0 0.0
5 2.0 4 2.0 2.0
6 NaN 0 0.0 0.0
7 2.0 6 2.0 2.0
8 NaN 4 4.0 4.0
9 4.0 6 4.0 4.0
Credit to this question for the data set: Combine Pandas data frame column values into new column