You should use std::array<bool, 2048> someArray
, not bool someArray[2048];
. If you're in C++11-land, you'll want to modernize your code as much as you are able.
std::array<bool, N>
is not specialized in the same way that std::vector<bool>
is, so there's no concerns there in terms of raw safety.
As for your actual question:
Will the reader see all the writes to someArray
that occurred before the lock was acquired?
Only if the writers to the array also interact with the lock, either by releasing it at the time that they finish writing, or else by updating a value associated with the lock that the reader then synchronizes with. If the writers never interact with the lock, then the data that will be retrieved by the reader is undefined.
One thing you'll also want to bear in mind: while it's not unsafe to have multiple threads write to the same array, provided that they are all writing to unique memory addresses, writing could be slowed pretty dramatically by interactions with the cache. For example:
void func_a() {
std::array<bool, 2048> someArray{};
for(int i = 0; i < 8; i++) {
std::thread writer([i, &someArray]{
for(size_t index = i * 256; index < (i+1) * 256; index++)
someArray[index] = true;
//Some kind of synchronization mechanism you need to work out yourself
});
writer.detach();
}
}
void func_b() {
std::array<bool, 2048> someArray{};
for(int i = 0; i < 8; i++) {
std::thread writer([i, &someArray]{
for(size_t index = i; index < 2048; index += 8)
someArray[index] = true;
//Some kind of synchronization mechanism you need to work out yourself
});
writer.detach();
}
}
The details are going to vary depending on the underlying hardware, but in nearly all situations, func_a
is going to be orders of magnitude faster than func_b
, at least for a sufficiently large array size (2048 was chosen as an example, but it may not be representative of the actual underlying performance differences). Both functions should have the same result, but one will be considerably faster than the other.