How do I calculate rolling median of dollar for a window size of previous 3 values?
Input data
dollars timestampGMT
25 2017-03-18 11:27:18
17 2017-03-18 11:27:19
13 2017-03-18 11:27:20
27 2017-03-18 11:27:21
13 2017-03-18 11:27:22
43 2017-03-18 11:27:23
12 2017-03-18 11:27:24
Expected Output data
dollars timestampGMT rolling_median_dollar
25 2017-03-18 11:27:18 median(25)
17 2017-03-18 11:27:19 median(17,25)
13 2017-03-18 11:27:20 median(13,17,25)
27 2017-03-18 11:27:21 median(27,13,17)
13 2017-03-18 11:27:22 median(13,27,13)
43 2017-03-18 11:27:23 median(43,13,27)
12 2017-03-18 11:27:24 median(12,43,13)
Below code does moving avg but PySpark doesn't have F.median().
pyspark: rolling average using timeseries data
EDIT 1: The challenge is median() function doesn't exit. I cannot do
df = df.withColumn('rolling_average', F.median("dollars").over(w))
If I wanted moving average I could have done
df = df.withColumn('rolling_average', F.avg("dollars").over(w))
EDIT 2: Tried using approxQuantile()
windfun = Window().partitionBy().orderBy(F.col(date_column)).rowsBetween(-3, 0) sdf.withColumn("movingMedian", sdf.approxQuantile(col='a', probabilities=[0.5], relativeError=0.00001).over(windfun))
But getting error
AttributeError: 'list' object has no attribute 'over'
EDIT 3
Please give solution without Udf since it won't benefit from catalyst optimization.