(Continued from a previous question)
I am trying to deploy a google dataflow job to run it as a cron job on the google app engine, following the method described here.
I have an DataFlow script (written in python) in a pipelines/script.py folder. Running this script locally (using the Apache Beam DirectRunner
) or on google cloud (using the DataFlowRunner
) works properly. But when deploying the job to run it periodically on the app engine, the job raises the following error when executed:
(4cb822d7f796239a): Traceback (most recent call last): File
"/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py",
line 582, in do_work
work_executor.execute() File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/executor.py",
line 166, in execute
op.start() File "apache_beam/runners/worker/operations.py", line 294, in apache_beam.runners.worker.operations.DoOperation.start
(apache_beam/runners/worker/operations.c:10607)
def start(self): File "apache_beam/runners/worker/operations.py", line 295, in
apache_beam.runners.worker.operations.DoOperation.start
(apache_beam/runners/worker/operations.c:10501)
with self.scoped_start_state: File "apache_beam/runners/worker/operations.py", line 300, in
apache_beam.runners.worker.operations.DoOperation.start
(apache_beam/runners/worker/operations.c:9702)
pickler.loads(self.spec.serialized_fn)) File "/usr/local/lib/python2.7/dist-
packages/apache_beam/internal/pickler.py", line 225, in loads
return dill.loads(s) File "/usr/local/lib/python2.7/dist-packages/dill/dill.py", line 277, in
loads
return load(file) File "/usr/local/lib/python2.7/dist-packages/dill/dill.py", line 266, in
load
obj = pik.load() File "/usr/lib/python2.7/pickle.py", line 858, in load
dispatch[key](self) File "/usr/lib/python2.7/pickle.py", line 1090, in load_global
klass = self.find_class(module, name) File "/usr/local/lib/python2.7/dist-packages/dill/dill.py", line 423, in
find_class
return StockUnpickler.find_class(self, module, name) File "/usr/lib/python2.7/pickle.py", line 1124, in find_class
__import__(module) ImportError: No module named pipelines.spanner_backup
This is the stack trace visible when directly accessing the job in the dataflow panel of the google cloud console. However, if I click on "Stack Traces" to see the error stack trace from the "Stackdriver Error Reporting" panel, I see the following trace:
Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 738, in run
work, execution_context, env=self.environment)
File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/workitem.py", line 130, in get_work_items
work_item_proto.sourceOperationTask.split)
File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/workercustomsources.py", line 142, in __init__
source_spec[names.SERIALIZED_SOURCE_KEY]['value'])
File "/usr/local/lib/python2.7/dist-packages/apache_beam/internal/pickler.py", line 225, in loads
return dill.loads(s)
File "/usr/local/lib/python2.7/dist-packages/dill/dill.py", line 277, in loads
return load(file)
File "/usr/local/lib/python2.7/dist-packages/dill/dill.py", line 266, in load
obj = pik.load()
File "/usr/lib/python2.7/pickle.py", line 858, in load
dispatch[key](self)
File "/usr/lib/python2.7/pickle.py", line 1090, in load_global
klass = self.find_class(module, name)
File "/usr/local/lib/python2.7/dist-packages/dill/dill.py", line 423, in find_class
return StockUnpickler.find_class(self, module, name)
File "/usr/lib/python2.7/pickle.py", line 1124, in find_class
__import__(module)
ImportError: No module named spanner.client
Suggesting some import error when sharing things between workers? Google Spanner should be properly installed though.
I am using:
Flask==0.12.2
apache-beam[gcp]==2.1.1
gunicorn==19.7.1
gevent==1.2.1
google-cloud-dataflow==2.1.1
google-cloud-spanner==0.26
Am I missing something ?
Edit: My setup.py is the following: (as described here, corresponding github link with comments here)
from distutils.command.build import build as _build
import subprocess
import setuptools
class build(_build): # pylint: disable=invalid-name
sub_commands = _build.sub_commands + [('CustomCommands', None)]
CUSTOM_COMMANDS = [
['echo', 'Custom command worked!']]
class CustomCommands(setuptools.Command):
"""A setuptools Command class able to run arbitrary commands."""
def initialize_options(self):
pass
def finalize_options(self):
pass
def RunCustomCommand(self, command_list):
print 'Running command: %s' % command_list
p = subprocess.Popen(
command_list,
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
# Can use communicate(input='y\n'.encode()) if the command run requires
# some confirmation.
stdout_data, _ = p.communicate()
print 'Command output: %s' % stdout_data
if p.returncode != 0:
raise RuntimeError(
'Command %s failed: exit code: %s' % (command_list, p.returncode))
def run(self):
for command in CUSTOM_COMMANDS:
self.RunCustomCommand(command)
REQUIRED_PACKAGES = ["Flask==0.12.2",
"apache-beam[gcp]==2.1.1",
"gunicorn==19.7.1",
"gevent==1.2.1",
"google-cloud-dataflow==2.1.1",
"google-cloud-spanner==0.26"
]
setuptools.setup(
name='dataflow_python_pipeline',
version='1.0.0',
description='DataFlow Python Pipeline',
install_requires=REQUIRED_PACKAGES,
packages=setuptools.find_packages(),
cmdclass={
'build': build,
'CustomCommands': CustomCommands,
}
)