I have data with binary YES/NO Class response. Using following code for running RF model. I have problem in getting confusion matrix result.
dataR <- read_excel("*:/*.xlsx")
Train <- createDataPartition(dataR$Class, p=0.7, list=FALSE)
training <- dataR[ Train, ]
testing <- dataR[ -Train, ]
model_rf <- train( Class~., tuneLength=3, data = training, method =
"rf", importance=TRUE, trControl = trainControl (method = "cv", number =
5))
Results:
Random Forest
3006 samples
82 predictor
2 classes: 'NO', 'YES'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 2405, 2406, 2405, 2404, 2404
Addtional sampling using SMOTE
Resampling results across tuning parameters:
mtry Accuracy Kappa
2 0.7870921 0.2750655
44 0.7787721 0.2419762
87 0.7767760 0.2524898
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
So far fine, but when I run this code:
# Apply threshold of 0.50: p_class
class_log <- ifelse(model_rf[,1] > 0.50, "YES", "NO")
# Create confusion matrix
p <-confusionMatrix(class_log, testing[["Class"]])
##gives the accuracy
p$overall[1]
I get this error:
Error in model_rf[, 1] : incorrect number of dimensions
I appreciate if you guys can help me to get confusion matrix result.