I am trying to write a MLP with TensorFlow (which I just started to learn, so apologies for the code!) for multivariate REGRESSION (no MNIST, please). Here is my MWE, where I chose to use the linnerud dataset from sklearn. (In reality I am using a much larger dataset, also here I am only using one layer because I wanted to make the MWE smaller, but I can add, if necessary). By the way I am using shuffle = False
in train_test_split
just because in reality I am working with a time series dataset.
MWE
######################### import stuff ##########################
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.datasets import load_linnerud
from sklearn.model_selection import train_test_split
######################## prepare the data ########################
X, y = load_linnerud(return_X_y = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle = False, test_size = 0.33)
######################## set learning variables ##################
learning_rate = 0.0001
epochs = 100
batch_size = 3
######################## set some variables #######################
x = tf.placeholder(tf.float32, [None, 3], name = 'x') # 3 features
y = tf.placeholder(tf.float32, [None, 3], name = 'y') # 3 outputs
# input-to-hidden layer1
W1 = tf.Variable(tf.truncated_normal([3,300], stddev = 0.03), name = 'W1')
b1 = tf.Variable(tf.truncated_normal([300]), name = 'b1')
# hidden layer1-to-output
W2 = tf.Variable(tf.truncated_normal([300,3], stddev = 0.03), name= 'W2')
b2 = tf.Variable(tf.truncated_normal([3]), name = 'b2')
######################## Activations, outputs ######################
# output hidden layer 1
hidden_out = tf.nn.relu(tf.add(tf.matmul(x, W1), b1))
# total output
y_ = tf.nn.relu(tf.add(tf.matmul(hidden_out, W2), b2))
####################### Loss Function #########################
mse = tf.losses.mean_squared_error(y, y_)
####################### Optimizer #########################
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(mse)
###################### Initialize, Accuracy and Run #################
# initialize variables
init_op = tf.global_variables_initializer()
# accuracy for the test set
accuracy = tf.reduce_mean(tf.square(tf.subtract(y, y_))) # or could use tf.losses.mean_squared_error
#run
with tf.Session() as sess:
sess.run(init_op)
total_batch = int(len(y_train) / batch_size)
for epoch in range(epochs):
avg_cost = 0
for i in range(total_batch):
batch_x, batch_y = X_train[i*batch_size:min(i*batch_size + batch_size, len(X_train)), :], y_train[i*batch_size:min(i*batch_size + batch_size, len(y_train)), :]
_, c = sess.run([optimizer, mse], feed_dict = {x: batch_x, y: batch_y})
avg_cost += c / total_batch
print('Epoch:', (epoch+1), 'cost =', '{:.3f}'.format(avg_cost))
print(sess.run(mse, feed_dict = {x: X_test, y:y_test}))
This prints out something like this
...
Epoch: 98 cost = 10992.617
Epoch: 99 cost = 10992.592
Epoch: 100 cost = 10992.566
11815.1
So obviously there is something wrong. I am suspecting that the problem is either in the cost function/accuracy or in the way I am using batches, but I can't quite figure it out..