I have a script which analyses a dataset and then outputs xyz data. In order to understand the distribution of the data, I want to visualize it in a 3d plot. As I have no experience what so ever with using matplotlib, I just copied the code from here and expected it to work with my text file which looks like this:
-0.9 -0.9 483
-0.9 -0.7 224
-0.9 -0.5 156
-0.9 -0.3 153
-0.9 -0.1 174
-0.9 0.1 268
-0.9 0.3 95
-0.9 0.5 59
-0.9 0.7 50
-0.9 0.9 199
-0.7 -0.9 917
-0.7 -0.7 244
-0.7 -0.5 208
-0.7 -0.3 148
-0.7 -0.1 139
-0.7 0.1 98
-0.7 0.3 52
-0.7 0.5 56
-0.7 0.7 60
-0.7 0.9 221
...
However, once I start the script, I get the following error which leads to the colorbar being displayed incorrectly:
Warning (from warnings module):
File "C:\Program Files\Python35\lib\site-packages\matplotlib\colors.py", line 496
cbook._putmask(xa, xa < 0.0, -1)
RuntimeWarning: invalid value encountered in less
Furthermore, the plot has these triangles on its edges. I'm not sure whether they are a consequence of the above mentioned error as well.
This is the output:
Here's my code:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
from matplotlib.mlab import griddata
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
data = np.genfromtxt('plot.txt')
x = data[:,0]
y = data[:,1]
z = data[:,2]
xi = np.linspace(-1, 1)
yi = np.linspace(-1, 1)
X, Y = np.meshgrid(xi, yi)
Z = griddata(x, y, z, xi, yi, interp='linear')
surf = ax.plot_surface(X, Y, Z, rstride=5, cstride=5, cmap=cm.jet,
linewidth=1, antialiased=True)
ax.set_zlim3d(np.min(Z), np.max(Z))
fig.colorbar(surf)
plt.show()
EDIT 1: I edited the source code to print xa before the offending line, which outputs:
[ nan nan nan nan nan nan nan nan nan nan nan 256.
256. 256. 256. 256. 256. 256. 256. nan nan 256. 256. 256.
256. 256. 256. 256. 256. nan nan 256. 256. 256. 256. 256.
256. 256. 256. nan nan 256. 256. 256. 256. 256. 256. 256.
256. nan nan 256. 256. 256. 256. 256. 256. 256. 256. nan
nan 256. 256. 256. 256. 256. 256. 256. 256. nan nan 256.
256. 256. 256. 256. 256. 256. 256. nan nan 256. 256. 256.
256. 256. 256. 256. 256. nan nan nan nan nan nan nan
nan nan nan nan]
So I clearly have some NaN values here, but I'm not sure where they come from.