If you want an ugly solution that also works...here's a function I created that finds columns that contain only strings, and returns the df minus those rows. (since your df has only one column, you'll just dataframe containing 1 column with all dicts). Then, from there, you'll want to use
df = json_normalize(df['A'].values)
instead of just df = json_normalize(df['A'])
.
For a single column dataframe...
import pandas as pd
import numpy as np
from pandas.io.json import json_normalize
def delete_strings(df):
nrows = df.shape[0]
rows_to_keep = []
for row in np.arange(nrows):
if type(df.iloc[row,0]) == dict:
rows_to_keep.append(row) #add the row number to list of rows
#to keep if the row contains a dict
return df.iloc[rows_to_keep,0] #return only rows with dicts
df = pd.DataFrame({'A': ["hello","world",{"a":5,"b":6,"c":8},"usa","india",
{"a":9,"b":10,"c":11}]})
df = delete_strings(df)
df = json_normalize(df['A'].values)
print(df)
#0 {'a': 5, 'b': 6, 'c': 8}
#1 {'a': 9, 'b': 10, 'c': 11}
For a multi-column df (also works with a single column df):
def delete_rows_of_strings(df):
rows = df.shape[0] #of rows in df
cols = df.shape[1] #of coluns in df
rows_to_keep = [] #list to track rows to keep
for row in np.arange(rows): #for every row in the dataframe
#num_string will count the number of strings in the row
num_string = 0
for col in np.arange(cols): #for each column in the row...
#if the value is a string, add one to num_string
if type(df.iloc[row,col]) == str:
num_string += 1
#if num_string, the number of strings in the column,
#isn't equal to the number of columns in the row...
if num_string != cols: #...add that row number to the list of rows to keep
rows_to_keep.append(row)
#return the df with rows containing at least one non string
return(df.iloc[rows_to_keep,:])
df = pd.DataFrame({'A': ["hello","world",{"a":5,"b":6,"c":8},"usa","india"],
'B' : ['hi',{"a":5,"b":6,"c":8},'sup','america','china']})
# A B
#0 hello hi
#1 world {'a': 5, 'b': 6, 'c': 8}
#2 {'a': 5, 'b': 6, 'c': 8} sup
print(delete_rows_of_strings(df))
# A B
#1 world {'a': 5, 'b': 6, 'c': 8}
#2 {'a': 5, 'b': 6, 'c': 8} sup