Because you have made a good-faith attempt by writing your own code, and because I see this is a kind of puzzle, I'm offering you below code which has only a single recursive call rather than having two recursive calls like in your code.
I think this is as simple as it gets while satisfying the constraints.
What it does: it counts down both numbers to zero, and checks which one reaches zero first. If both reach zero at the same time, the result should be false, but simply checking whether y
is zero already includes that check.
public static boolean isLessThan(int x, int y) {
if (y == 0) {
return false;
}
if (x == 0) {
return true;
}
return isLessThan(x - 1, y - 1);
}
@Andreas' answer is more efficient than the above. My aim initially was for a short, clean answer.
I've tried to create a shorter bitshift approach.
Although harder to grasp than the counting example, it has a better complexity and it has an equal amount of lines as the above code (I'm not counting that constant as I could include it inside the code at the expense of readability).
Note that this code shifts left rather than right and - it checks the most significant bit first.
public static final int HIGH_BIT = 1 << 31;
public static boolean isLessThan(int x, int y) {
if (x == y) {
return false;
}
if ((x & HIGH_BIT) != (y & HIGH_BIT)) {
return (y & HIGH_BIT) == HIGH_BIT;
}
return isLessThan(x << 1, y << 1);
}
Note: if !=
is disallowed, you can change the second if
statement to:
if (((x ^ y) & HIGH_BIT) == HIGH_BIT)
Also note that the complexity is really O(1)
as, although the algorithm is theoretically O(log n)
, Java ints are 32 bits so the upper bounds is O(32)
which is the same as O(1)
.