What is julian way to do yield (and yield from) as python do?
Edit: I will try to add small example in python.
Think 4x4 chess board. Find every N moves long path chess king could do. Don't waste memory -> make generator of every path.
if we sign every position with numbers:
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 16
point 0 has 3 neighbors (1, 4, 5). We could find table for every neighbors for every point:
NEIG = [[1, 4, 5], [0, 2, 4, 5, 6], [1, 3, 5, 6, 7], [2, 6, 7], [0, 1, 5, 8, 9], [0, 1, 2, 4, 6, 8, 9, 10], [1, 2, 3, 5, 7, 9, 10, 11], [2, 3, 6, 10, 11], [4, 5, 9, 12, 13], [4, 5, 6, 8, 10, 12, 13, 14], [5, 6, 7, 9, 11, 13, 14, 15], [6, 7, 10, 14, 15], [8, 9, 13], [8, 9, 10, 12, 14], [9, 10, 11, 13, 15], [10, 11, 14]]
Recursive function (generator) which enlarge given path from list of points or from generator of (generator of ...) points:
def enlarge(path):
if isinstance(path, list):
for i in NEIG[path[-1]]:
if i not in path:
yield path[:] + [i]
else:
for i in path:
yield from enlarge(i)
Function (generator) which give every path with given length
def paths(length):
steps = ([i] for i in range(16)) # first steps on every point on board
for _ in range(length-1):
nsteps = enlarge(steps)
steps = nsteps
yield from steps
We could see that there is 905776 paths with length 10:
sum(1 for i in paths(10))
Out[89]: 905776
In ipython we could timeit:
%timeit sum(1 for i in paths(10))
1.21 s ± 15.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
My julia implementation is ugly and much more complicated. And it seems to be slower.