I have yearly application data for different apps in json format. There are 10 different json files for each application. I try to merge them into a single csv. Let me first show you the data structure:
[{"date": "2017-10-23", "downloads": 15358985, "end": "2017-10-23", "data": {"2.7.3.4196-beta": 7, "1.0.1": 268, "1.0.2": 715, "2.9.0.4250-beta": 1, "2.7.3.4215-beta": 2, "2.7.2.4151-beta": 1, "2.2.3.1-signed": 9292}}, {"date": "2017-10-22", "downloads": 12778233, "end": "2017-10-22", "data": {"2.7.3.4196-beta": 5, "2.4.1": 842, "2.99.0.1872beta": 12, "2.99.0.1857beta": 4, "2.3.1.1-signed": 3, "2.6.10": 11538, "2.6.4.1-signed": 8, "2.7.3.4198-beta": 4}}]
When I parse them into pandas dataframe I get something like this:
date downloads end data
2017-10-23 15358985 2017-10-23 {"2.7.3.4196-beta": 7, "1.0.1": 268, "1.0.2": 715, "2.9.0.4250-beta": 1, "2.7.3.4215-beta": 2, "2.7.2.4151-beta": 1, "2.2.3.1-signed": 9292}}
2017-10-22 12778233 2017-10-22 {"2.7.3.4196-beta": 5, "2.4.1": 842, "2.99.0.1872beta": 12, "2.99.0.1857beta": 4, "2.3.1.1-signed": 3, "2.6.10": 11538, "2.6.4.1-signed": 8, "2.7.3.4198-beta": 4}}
Please notice that not all of the versions are downloaded everyday. How I could create a column for different versions of the application? If the application is not downloaded on particular day we could leave it blank or fill with NaNs