You can simply use slicing
to flip the second last axis to get equivalent flipped view into the input array of images, as such won't be creating any new data in memory and hence an efficient one, like so -
images[...,::-1,:]
If you still need to make a copy, use .copy
there, which would still be more efficient than np.fliplr
and noticeable with small/decent sized arrays.
Runtime test -
It seems NumPy is the winner, so I will test it out against that one.
In [64]: images = np.random.randint(0,255,(3,200,400,3))
In [65]: out1 = np.array([np.fliplr(images[i]) for i in range(3)])
In [66]: out2 = images[...,::-1,:]
In [67]: np.allclose(out1, out2)
Out[67]: True
In [68]: %timeit np.array([np.fliplr(images[i]) for i in range(3)])
1000 loops, best of 3: 1.38 ms per loop
In [69]: %timeit images[...,::-1,:]
1000000 loops, best of 3: 259 ns per loop # virtually free
If you need copy -
In [76]: images = np.random.randint(0,255,(3,10,10,3))
In [77]: %timeit np.array([np.fliplr(images[i]) for i in range(3)])
100000 loops, best of 3: 5.76 µs per loop
In [78]: %timeit images[...,::-1,:].copy()
100000 loops, best of 3: 2.23 µs per loop
In [79]: images = np.random.randint(0,255,(3,100,100,3))
In [80]: %timeit np.array([np.fliplr(images[i]) for i in range(3)])
10000 loops, best of 3: 159 µs per loop
In [81]: %timeit images[...,::-1,:].copy()
10000 loops, best of 3: 152 µs per loop