The kill(1) command does not send signals to some thread, but to a entire process. Read carefully signal(7) and pthreads(7).
Signals and threads don't mix well together. As a rule of thumb, you don't want to use both.
BTW, using kill -KILL
or kill -9
is a mistake. The receiving process don't have the opportunity to handle the SIGKILL
signal. You should use SIGTERM
...
If you want to handle SIGTERM
in a multi-threaded application, read signal-safety(7) and consider setting some pipe(7) to self (and use poll(2) in some event loop) which the signal handler would write(2). That well-known trick is well explained in Qt documentation. You could also consider the signalfd(2) Linux specific syscall.
If you think of using pthread_kill(3), you probably should not in your case (however, using it with a 0 signal is a valid but crude way to check that the thread exists). Read some Pthread tutorial. Don't forget to pthread_join(3) or pthread_detach(3).
Child thread is supposed to run all the time.
This is the wrong approach. You should know when and how a child thread terminates because you are coding the function passed to pthread_create(3) and you should handle all error cases there and add relevant cleanup code (and perhaps synchronization). So the child thread should run as long as you want it to run and should do appropriate cleanup actions when ending.
Consider also some other inter-process communication mechanism (like socket(7), fifo(7) ...); they are generally more suitable than signals, notably for multi-threaded applications. For example you might design your application as some specialized web or HTTP server (using libonion or some other HTTP server library). You'll then use your web browser, or some HTTP client command (like curl) or HTTP client library like libcurl to drive your multi-threaded application. Or add some RPC ability into your application, perhaps using JSONRPC.
(your putative usage of signals smells very bad and is likely to be some XY problem; consider strongly using something better)
my motivation for this is to implement another layer of security in my application
I don't understand that at all. How can signal and threads add security? I'm guessing you are decreasing the security of your software.
I wanted to be sure that this child thread is kept alive.
You can't be sure, other than by coding well and avoiding bugs (but be aware of Rice's theorem and the Halting Problem: there cannot be any reliable and sound static source code program analysis to check that). If something else (e.g. some other thread, or even bad code in your own one) is e.g. arbitrarily modifying the call stack of your thread, you've got undefined behavior and you can just be very scared.
In practice tools like the gdb
debugger, address and thread sanitizers, other compiler instrumentation options, valgrind, can help to find most such bugs, but there is No Silver Bullet.
Maybe you want to take advantage of process isolation, but then you should give up your multi-threading approach, and consider some multi-processing approach. By definition, threads share a lot of resources (notably their virtual address space) with other threads of the same process. So the security checks mentioned in your question don't make much sense. I guess that they are adding more code, but just decrease security (since you'll have more bugs).
Reading a textbook like Operating Systems: Three Easy Pieces should be worthwhile.