I'm trying to create different selection methods for a genetic algorithm I'm working on but one problem I meet in all selection methods is that my fitness of each node must be different. This is a problem for me as my fitness calculator is quite basic and will yield several identical fitness's
public static Map<String, Double> calculateRouletteSelection(Map<String, Double> population) {
String[] keys = new String[population.size()];
Double[] values = new Double[population.size()];
Double[] unsortedValues = new Double[population.size()];
int index = 0;
for(Map.Entry<String, Double> mapEntry : population.entrySet()) {
keys[index] = mapEntry.getKey();
values[index] = mapEntry.getValue();
unsortedValues[index] = mapEntry.getValue();
index++;
}
Arrays.sort(values);
ArrayList<Integer> numbers = new ArrayList<>();
while(numbers.size() < values.length/2) {
int random = rnd.nextInt(values.length);
if (!numbers.contains(random)) {
numbers.add(random);
}
}
HashMap<String, Double> finalHashMap = new HashMap<>();
for(int i = 0; i<numbers.size(); i++) {
for(int j = 0; j<values.length; j++) {
if(values[numbers.get(i)] == unsortedValues[j]) {
finalHashMap.put(keys[j], unsortedValues[j]);
}
}
}
return finalHashMap;
}
90% of all my different selection methods are the same so I'm sure if I could solve it for one I can solve it for all. Any help on what I'm doing wrong would be appreciated
EDIT: I saw I'm meant to post the general behavior of what's happening so essentially the method takes in a HashMap<>, sorts the values based on their fitness, picks half sorted values randomly and adds these to a new HashMap<> with their corresponding chromosomes.