I conduct time series by day for SALES. I have dataset with data by day. (format 01.11.2015-29.11.2015). Here the example:
dput
DAY STORE ART SALES
01.11.2015 1534 343533 62.5000
01.11.2015 25039 20490 686.4480
01.11.2015 1612 295206 185.0000
01.11.2015 1053 16406274 32.5000
01.11.2015 1612 49495 143.1196
01.11.2015 961 15309949 50.9000
How to do forecast for all shops and ART ot once, how to split my analysis on two factor?
#library('ggplot2')
library('forecast')
library('tseries')
mydat=read.csv("C:/Users/synthex/Downloads/sales.csv", sep=";",dec=",")
View(mydat)
str(mydat)
count_ts = ts(mydat[, c('SALES')])
View(count_ts)
mydat$clean_cnt = tsclean(count_ts)
mydat$cnt_ma = ma(mydat$clean_cnt, order=7) # using the clean count with no outliers
mydat$cnt_ma30 = ma(mydat$clean_cnt, order=30)
count_ma = ts(na.omit(mydat$cnt_ma), frequency=30)
decomp = stl(count_ma, s.window="periodic")
deseasonal_cnt <- seasadj(decomp)
plot(decomp)
adf.test(count_ma, alternative = "stationary")
auto.arima(deseasonal_cnt, seasonal=FALSE)
fit<-auto.arima(deseasonal_cnt, seasonal=FALSE)
tsdisplay(residuals(fit), lag.max=45, main='(1,1,0) Model Residuals')
fit2 = arima(deseasonal_cnt, order=c(1,1,7))
fcast <- forecast(fit2, h=1)