update
Actually this might work with a simple nested dictionary:
import pandas as pd
from collections import defaultdict
nested_dict = lambda: defaultdict(nested_dict)
output = nested_dict()
for lst in df.values:
output[lst[1]][lst[0]][lst[2]] = lst[3:].tolist()
Or:
output = defaultdict(dict)
for lst in df.values:
try:
output[lst[1]][lst[0]].update({lst[2]:lst[3:].tolist()})
except KeyError:
output[lst[1]][lst[0]] = {}
finally:
output[lst[1]][lst[0]].update({lst[2]:lst[3:].tolist()})
Or:
output = defaultdict(dict)
for lst in df.values:
if output.get(lst[1], {}).get(lst[0]) == None:
output[lst[1]][lst[0]] = {}
output[lst[1]][lst[0]].update({lst[2]:lst[3:].tolist()})
output
Here is my old solution, we make use df.groupby
to group the dataframe by country and app_id. From here we collect the data (excluding country and app_id) and use defaultdict(dict)
to add data to output dictionary in a nested way.
import pandas as pd
from collections import defaultdict
output = defaultdict(dict)
groups = ["country","app_id"]
cols = [i for i in df.columns if i not in groups]
for i,subdf in df.groupby(groups):
data = subdf[cols].set_index('date').to_dict("split") #filter away unwanted cols
d = dict(zip(data['index'],data['data']))
output[i[0]][i[1]] = d # assign country=level1, app_id=level2
output
return:
{'FR': {123: {'2016-01-01': [10, 20, 30, 40]}},
'US': {123: {'2016-01-01': [50, 70, 80, 90],
'2016-01-02': [60, 80, 90, 100],
'2016-01-03': [70, 88, 99, 11]},
124: {'2016-01-01': [10, 20, 30, 40]}}}
and output['US'][123]['2016-01-01']
return:
[50, 70, 80, 90]
if:
df = pd.DataFrame.from_dict({'app_id': {0: 123, 1: 123, 2: 123, 3: 123, 4: 124},
'country': {0: 'US', 1: 'US', 2: 'US', 3: 'FR', 4: 'US'},
'date': {0: '2016-01-01',
1: '2016-01-02',
2: '2016-01-03',
3: '2016-01-01',
4: '2016-01-01'},
'val1': {0: 50, 1: 60, 2: 70, 3: 10, 4: 10},
'val2': {0: 70, 1: 80, 2: 88, 3: 20, 4: 20},
'val3': {0: 80, 1: 90, 2: 99, 3: 30, 4: 30},
'val4': {0: 90, 1: 100, 2: 11, 3: 40, 4: 40}})