I do some computationally expensive tasks in python and found the thread module for parallelization. I have a function which does the computation and returns a ndarray as result. Now I want to know how I can parallize my function and get back the calculated Arrays from each thread.
The followed example is strongly simplified with light functions and calculations.
import numpy as np
def calculate_result(input):
a=np.linspace(1.0, 1000.0, num=10000) # just an example
result = input*a
return(result)
input =[1,2,3,4]
for i in range(0,len(input(i))):
t.Thread(target=calculate_result, args=(input))
t. start()
#Here I want to receive the return value from the thread
I am looking for a way to get the return value from the thread / function for each thread, because in my task each thread calculates different values.
I found an other Question (how to get the return value from a thread in python?) where someone is looking for a similar problem (no ndarrays) and which is handled with ThreadPool and async...
-------------------------------------------------------------------------------
Thanks for your answers ! Due to your help now I am looking for a way to solve my problem with the multiprocessing modul. To give you a better understanding what I do, see my following Explanation.
Explanation:
My 'input_data' is an ndarray with 282240 elements of type uint32
In the 'calculation_function()'I use a for loop to calculate from every 12 bit a result and put it into the 'output_data'
Because this is very slow, I split my input_data into e.g. 4 or 8 parts and calculate each part in the calculation_function().
Now I am looking for a way, how to parallize the 4 or 8 function calls
The order of the data is elementary, because the data is in image and each pixel have to be at the correct Position. So function call no. 1 calculates the first and the last function call the last pixel of the image.
The calculations work fine and the image can be completly rebuilt from my algo but I need the parallelization to speed up for time critical aspects.
Summary: One input ndarray is devided into 4 or 8 parts. In each part are 70560 or 35280 uint32 values. From each 12 bit I calculate one Pixel with 4 or 8 function calls. Each function returns one ndarray with 188160 or 94080 pixel. All return values will be put together in a row and reshaped into an image.
What allready works: Calculations are allready working and I can reconstruct my image
Problem: Function calls are done seriall and in a row but each image reconstruction is very slow
Main Goal: Speed up the function calls by parallize the function calls.
Code:
def decompress(payload,WIDTH,HEIGHT):
# INPUTS / OUTPUTS
n_threads = 4
img_input = np.fromstring(payload, dtype='uint32')
img_output = np.zeros((WIDTH * HEIGHT), dtype=np.uint32)
n_elements_part = np.int(len(img_input) / n_threads)
input_part=np.zeros((n_threads,n_elements_part)).astype(np.uint32)
output_part =np.zeros((n_threads,np.int(n_elements_part/3*8))).astype(np.uint32)
# DEFINE PARTS (here 4 different ones)
start = np.zeros(n_threads).astype(np.int)
end = np.zeros(n_threads).astype(np.int)
for i in range(0,n_threads):
start[i] = i * n_elements_part
end[i] = (i+1) * n_elements_part -1
# COPY IMAGE DATA
for idx in range(0,n_threads):
input_part [idx,:] = img_input[start[idx]:end[idx]+1]
for idx in range(0,n_threads): # following line is the function_call that should be parallized
output_part[idx,:] = decompress_part2(input_part[idx],output_part[idx])
# COPY PARTS INTO THE IMAGE
img_output[0 : 188160] = output_part[0,:]
img_output[188160: 376320] = output_part[1,:]
img_output[376320: 564480] = output_part[2,:]
img_output[564480: 752640] = output_part[3,:]
# RESHAPE IMAGE
img_output = np.reshape(img_output,(HEIGHT, WIDTH))
return img_output
Please dont take care of my beginner programming style :) Just looking for a solution how to parallize the function calls with the multiprocessing module and get back the return ndarrays.
Thank you so much for your help !