Looking at this code example from the TF documentation:
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(...)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
dataset = dataset.repeat(num_epochs)
iterator = dataset.make_one_shot_iterator()
Does the dataset.repeat(num_epochs)
require that the entire dataset be loaded into memory? Or is it re-initializing the dataset(s) that came before it when it receives an end-of-dataset exception?
The documentation is ambiguous about this point.