The Problem:
I want to calculate the dot product of a very large set of data. I am able to do this in a nested for-loop, but this is way too slow. Here is a small example:
import numpy as np
points = np.array([[0.5, 2, 3, 5.5, 8, 11], [1, 2, -1.5, 0.5, 4, 5]])
lines = np.array([[0, 2, 4, 6, 10, 10, 0, 0], [0, 0, 0, 0, 0, 4, 4, 0]])
x1 = lines[0][0:-1]
y1 = lines[1][0:-1]
L1 = np.asarray([x1, y1])
# calculate the relative length of the projection
# of each point onto each line
a = np.diff(lines)
b = points[:,:,None] - L1[:,None,:]
print(a.shape)
print(b.shape)
[rows, cols, pages] = np.shape(b)
Z = np.zeros((cols, pages))
for k in range(cols):
for l in range(pages):
Z[k][l] = a[0][l]*b[0][k][l] + a[1][l]*b[1][k][l]
N = np.linalg.norm(a, axis=0)**2
relativeProjectionLength = np.squeeze(np.asarray(Z/N))
In this example, the first two dimensions of both a and b represent the x- and y-coordinates that I need for the dot product. The shape of a is (2,7) and b has (2,6,7). Since the dot product reduces the first dimension I would expect the result to be of the shape (6,7). How can I calculate this without the slow loops?
What I have tried:
I think that numpy.dot with correct broadcasting could do the job, however I have trouble setting up the dimensions correctly.
a = a[:, None, :]
Z = np.dot(a,b)
This on gives me the following error:
shapes (2,1,7) and (2,6,7) not aligned: 7 (dim 2) != 6 (dim 1)