I have a low-resolution image (sLR) which is generated by selecting the central part of the reference high-resolution image (sHR) in the frequency (k-space) domain in row-direction. When I zero-pad this low-resolution image in frequency-domain, I get ringing artifact in the spatial domain as it is expected. I try to remove this artifact by filtering the image using Hamming window. Please see my code below. I have doubts about applying fft and ifft to the image and also filtering process, and I would be thankful if someone could please review my code and confirm it is correct.
% sHR: HR reference image
n = size(sHR,1);
kspHR = fftshift(fft(sHR,n,1),1)/n; % HR image in k-space
% Generating LR image (LR in row-direction)
kspLR = kspHR((n/2)-(n/4)+1:(n/2)+(n/4),:);
sLR = real(ifft(ifftshift(kspLR,1),n,1)))*n;
% Zero-padding
a = floor(size(kspLR,1)/2);
kspZP = padarray(kspLR, a ,'both');
sZP = real(ifft(ifftshift(kspZP,1),n,1)))*n;% image with Ringing artifact
% Apply Hamming filter to Zero-padded kspace image (kspZP)
[r,c]=size(abs(kspZP));
w = hamming(r);
W = repmat(w,[1,c]);
kspHM = W.*kspZP
sHM = real(ifft(ifftshift(kspHM,1),n,1)))*n; % Filtered image in spatial domain
My second question is when I use iffft, the output image usually has negative intensities. For further processing in the Spatial domain, is that okay if I normalize the image intensity in a way that the minimum intensity of the image is 0? or should I use the absolute of the image?