I am getting this error:
ValueError: Items of feature_columns must be a _FeatureColumn. Given (type ): Index(['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited'], dtype='object').
I am using tensorFlow lib. I want to get prediction results but I can not run m.train(input_fn=get_input_fn ,steps=5000)
code. I always got the same error whatever I did. I used these input functions in the following but nothing changed.
def input_fn_train():
x=tf.constant(df_train.astype(np.float64)),
y=tf.constant(df_train[LABEL].astype(np.float64))
return x, y
and
def get_input_fn(data_set, num_epochs=None, shuffle=False):
return tf.estimator.inputs.pandas_input_fn(
x=pd.DataFrame({k: data_set[k].values for k in data_set.columns}),
y=pd.Series(data_set[LABEL].values), num_epochs=num_epochs,
shuffle=shuffle)
I can not understand what should I do. What the error is about? I've been googling but never found useful thing. How can I handle this error. The code is below. Thanks!
import pandas as pd
import tensorflow as tf
import numpy as np
import tempfile
COLS= ["RowNumber","CustomerId","Surname","CreditScore","Geography",
"Gender","Age","Tenure","Balance","NumOfProducts","HasCrCard",
"IsActiveMember","EstimatedSalary","Exited"]
FEATURES = ["CreditScore","Age","Tenure","Balance","NumOfProducts",
"HasCrCard","IsActiveMember", "EstimatedSalary"]
LABEL="Exited"
df_train = pd.read_csv("Churn_Modelling.csv", skipinitialspace=True,
header=0)
df_test = pd.read_csv("Churn_Modelling.csv", skipinitialspace=True,
header=0)
test_label = df_test[LABEL].astype(float)
df_test.drop("Surname", axis = 1, inplace=True)
df_test.drop("RowNumber", axis = 1, inplace=True)
df_test.drop("CustomerId", axis = 1, inplace=True)
df_train.drop("CustomerId", axis = 1, inplace=True)
df_train.drop("Surname", axis = 1, inplace=True)
df_train.drop("RowNumber", axis = 1, inplace=True)
df_train.drop("Geography", axis = 1, inplace=True)
df_train.drop("Gender", axis = 1, inplace=True)
def get_input_fn():
return {'x': tf.constant(df_train[FEATURES].as_matrix(), tf.float32,
df_train.shape),
'y': tf.constant(df_train[LABEL].as_matrix(), tf.float32,
df_train.shape)
}
df=df_train.select_dtypes(exclude=['object'])
numeric_cols=df.columns
m = tf.estimator.LinearClassifier(model_dir=model_dir, feature_columns=
[numeric_cols])
m.train(input_fn=get_input_fn ,steps=5000)
results = m.evaluate(input_fn= get_input_fn(df_test, num_epochs=1,
shuffle=False),steps=None)
y = m.predict(input_fn=get_input_fn(df_test, num_epochs=1, shuffle=False))
pred = list(y)
rowNumber=0
for i in pred:
print(str(rowNumber)+': '+str(pred[i]))
rowNumber=rowNumber+1