I am using jupyter notebook first time. I tried to groupby one column of csv and get the count of the values. i got the below result with this code.
import pandas
pandas.read_csv('a.csv', sep=',')
df.groupby('name').name.count()
name
>Aa</TOPONYM> 4
>Aachen</TOPONYM> 5
>Aartselaar</TOPONYM> 1
>Abadan</TOPONYM> 1
>Abaya</TOPONYM> 1
>Abba</TOPONYM> 12
>Abbey 2
>Abbeydale</TOPONYM> 1
>Abbot</TOPONYM> 2
>Abbots 3
>Abbotsford</TOPONYM> 22
>Abbotsinch</TOPONYM> 5
>Abbotts 1
>Abel</TOPONYM> 1
>Aberchirder</TOPONYM> 2
>Aberdare</TOPONYM> 3
>Aberdeen 1
>Aberdeen</TOPONYM> 163
>Aberdeenshire</TOPONYM> 286
>Aberdour</TOPONYM> 9
>Aberfan</TOPONYM> 1
>Aberfeldy</TOPONYM> 16
>Abergavenny</TOPONYM> 4
>Aberlady 1
>Aberlady</TOPONYM> 3
>Abernethy</TOPONYM> 1
>Abertay 1
>Abertillery</TOPONYM> 6
>Abha</TOPONYM> 2
>Abidjan</TOPONYM> 10
...
>Zakho</TOPONYM> 20
>Zakopane</TOPONYM> 1
>Zambezi 2
>Zambezi</TOPONYM> 8
>Zambia</TOPONYM> 19
>Zamboanga</TOPONYM> 4
>Zandak</TOPONYM> 3
>Zanzibar</TOPONYM> 11
>Zaragosa</TOPONYM> 1
>Zaragoza</TOPONYM> 4
>Zeebrugge</TOPONYM> 28
>Zeeland</TOPONYM> 2
>Zemun</TOPONYM> 1
>Zenica</TOPONYM> 12
>Zermatt</TOPONYM> 5
>Zetland</TOPONYM> 1
>Zhizhong</TOPONYM> 1
>Zhongshan</TOPONYM> 2
>Zhuhai</TOPONYM> 1
>Zimbabwe</TOPONYM> 377
>Znamenskoye</TOPONYM> 1
>Zoetermeer</TOPONYM> 1
>Zola</TOPONYM> 1
>Zomba</TOPONYM> 3
>Zulu</TOPONYM> 1
>Zululand</TOPONYM> 2
>Zuni</TOPONYM> 2
>Zurich</TOPONYM> 86
>Zvornik</TOPONYM> 3
>Zwolle</TOPONYM> 1
Name: name, Length: 8585, dtype: int64
is it possible to get the counts alphabet by alphabet, first I should run the command with alphabet a and it should give all values with a then next b and so on. or if it's possible to get the values skipping starting 100 values.
My real data looks like this:
<TOPONYM geonameid="2657540" lat="51.24827" lon="-0.76389" >Aldershot</TOPONYM>
<TOPONYM geonameid="3037854" lat="49.9" lon="2.3" >Amiens</TOPONYM>
<TOPONYM geonameid="6216857" lat="-43.59832" lon="171.55011" >Alaska</TOPONYM>
<TOPONYM geonameid="3037854" lat="49.9" lon="2.3" >Amiens</TOPONYM>
<TOPONYM geonameid="2759794" lat="52.37403" lon="4.88969" >Amsterdam</TOPONYM>
<TOPONYM geonameid="7216668" lat="28.0106" lon="-82.1184" >Alabama</TOPONYM>
<TOPONYM geonameid="5884078" lat="48.98339" lon="-73.34907" >Ally</TOPONYM>
<TOPONYM geonameid="2507480" lat="36.7525" lon="3.04197" >Algiers</TOPONYM>
<TOPONYM geonameid="2759794" lat="52.37403" lon="4.88969" >Amsterdam</TOPONYM>
<TOPONYM geonameid="2759794" lat="52.37403" lon="4.88969" >Amsterdam</TOPONYM>