I try to follow the tensorflow API 1.4 document to achieve what I need in a learning process.
I am now at this stage, can produce a predict object for example:
classifier = tf.estimator.DNNClassifier(feature_columns=feature_cols,hidden_units=[10, 20, 10], n_classes=3, model_dir="/tmp/xlz_model")
predict = classifier.predict(input_fn=input_pd_fn_prt (test_f),predict_keys=["class_ids"])
label =tf.constant(test_l.values, tf.int64)
how can I use predict and label in tf.metrics.auc
for example:
out, opt = tf.metrics.auc(label, predict)
I have tried so many different options. there are no clear documentation how these tensorflow APIs can be should be used.