I am trying to fit an LSTM network to a sin function. Currently, as far as I understand Keras, my code does only predict the next value. According to this link: Many to one and many to many LSTM examples in Keras it is a many to one model. However, my goal is to implement a Many-to-many model. Basically, I want to be able to predict let's say 10 values, to a given time. When I am trying to use
return_sequences=True
(see line model.add(..)
), which is supposed to be the solution, the following error occurs:
ValueError: Error when checking target: expected lstm_8 to have 3 dimensions, but got array with shape (689, 1)
Unfortunately, I have absolutely no clue why this happens. Is there a general rule how the input shape needs to be when using return_sequences=True
? Furthermore what exactly would I need to change? Thanks for any help.
import pandas
import numpy as np
import matplotlib.pylab as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import sklearn
from keras.models import Sequential
from keras.layers import Activation, LSTM
from keras import optimizers
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
#generate sin function with noise
x = np.arange(0, 100, 0.1)
noise = np.random.uniform(-0.1, 0.1, size=(1000,))
Y = np.sin(x) + noise
# Perform feature scaling
scaler = MinMaxScaler()
Y = scaler.fit_transform(Y.reshape(-1, 1))
# split in train and test
train_size = int(len(Y) * 0.7)
test_size = len(Y) - train_size
train, test = Y[0:train_size,:], Y[train_size:len(Y),:]
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
# reshape into X=t and Y=t+1
look_back = 10
X_train, y_train = create_dataset(train, look_back)
X_test, y_test = create_dataset(test, look_back)
# LSTM network expects the input data in form of [samples, time steps, features]
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
np.set_printoptions(threshold=np.inf)
# compile model
model = Sequential()
model.add(LSTM(1, input_shape=(look_back, 1)))#, return_sequences=True)) <== uncomment this
model.compile(loss='mean_squared_error', optimizer='adam')
SVG(model_to_dot(model).create(prog='dot', format='svg'))
model.fit(X_train, y_train, validation_data=(X_test, y_test),
batch_size=10, epochs=10, verbose=2)
prediction = model.predict(X_test, batch_size=1, verbose=0)
prediction.reshape(-1)
#Transform back to original representation
Y = scaler.inverse_transform(Y)
prediction = scaler.inverse_transform(prediction)
plt.plot(np.arange(0,Y.shape[0]), Y)
plt.plot(np.arange(Y.shape[0] - X_test.shape[0] , Y.shape[0]), prediction, 'red')
plt.show()
error = mean_squared_error(y_test, prediction)
print(error)