I wanted to weigh in with some options
Setup
m = dict(
JAN='01', FEB='02', MAR='03', APR='04',
MAY='05', JUN='06', JUL='07', AUG='08',
SEP='09', OCT='10', NOV='11', DEC='12'
)
m2 = m.copy()
m2.update({v: v for v in m.values()})
f = lambda x: m.get(x, x)
Option 1
list comprehension
pd.Series(
pd.to_datetime(
[x[:2] + f(x[2:5]) + x[5:] for x in s.values.tolist()],
format='%d%m%Y'),
s.index)
0 2017-06-29
1 2017-08-01
dtype: datetime64[ns]
Option 2
Create a dataframe
pd.to_datetime(
pd.DataFrame(dict(
day=s.str[:2],
year=s.str[-4:],
month=s.str[2:-4].map(m2)
)))
0 2017-06-29
1 2017-08-01
dtype: datetime64[ns]
Option 2B
Create a dataframe
pd.to_datetime(
pd.DataFrame(dict(
day=s.str[:2],
year=s.str[-4:],
month=s.str[2:-4].map(f)
)))
0 2017-06-29
1 2017-08-01
dtype: datetime64[ns]
Option 2C
Create a dataframe
I estimate this to be the quickest
pd.to_datetime(
pd.DataFrame(dict(
day=s.str[:2].astype(int),
year=s.str[-4:].astype(int),
month=s.str[2:-4].map(m2).astype(int)
)))
0 2017-06-29
1 2017-08-01
dtype: datetime64[ns]
Test
s = pd.Series(["29062017", "01AUG2017"] * 100000)
%timeit pd.to_datetime(s.replace(m, regex=True), format='%d%m%Y')
%timeit pd.to_datetime(s.str[:2] + s.str[2:5].replace(m) + s.str[5:], format='%d%m%Y')
%timeit pd.to_datetime(s.str[:2] + s.str[2:5].map(f) + s.str[5:], format='%d%m%Y')
%timeit pd.to_datetime(s, format='%d%m%Y', errors='coerce').fillna(pd.to_datetime(s, format='%d%b%Y', errors='coerce'))
%timeit pd.Series(pd.to_datetime([x[:2] + f(x[2:5]) + x[5:] for x in s.values.tolist()], format='%d%m%Y'), s.index)
%timeit pd.to_datetime(pd.DataFrame(dict(day=s.str[:2], year=s.str[-4:], month=s.str[2:-4].map(m2))))
%timeit pd.to_datetime(pd.DataFrame(dict(day=s.str[:2], year=s.str[-4:], month=s.str[2:-4].map(f))))
%timeit pd.to_datetime(pd.DataFrame(dict(day=s.str[:2].astype(int), year=s.str[-4:].astype(int), month=s.str[2:-4].map(m2).astype(int))))
1.39 s ± 24 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
690 ms ± 17.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
613 ms ± 13.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
533 ms ± 14.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
529 ms ± 8.04 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
557 ms ± 13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
607 ms ± 26.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
328 ms ± 31.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)