I just took a Codility demo test. The question and my answer can be seen here, but I'll paste my answer here as well. My response:
def solution(A):
# write your code in Python 2.7
retresult = 1; # the smallest integer we can return, if it is not in the array
A.sort()
for i in A:
if i > 0:
if i==retresult: retresult += 1 # increment the result since the current result exists in the array
elif i>retresult: break # we can go out of the loop since we found a bigger number than our current positive integer result
return retresult
My question is around time complexity, which I hope to better understand by your response. The question asks for expected worst-case time complexity is O(N).
Does my function have O(N) time complexity? Does the fact that I sort the array increase the complexity, and if so how?
Codility reports (for my answer)
Detected time complexity:
O(N) or O(N * log(N))
So, what is the complexity for my function? And if it is O(N*log(N)), what can I do to decrease the complexity to O(N) as the problem states?
Thanks very much!
p.s. my background reading on time complexity comes from this great post.
EDIT
Following the reply below, and the answers described here for this problem, I would like to expand on this with my take on the solutions:
basicSolution has an expensive time complexity and so is not the right answer for this Codility test:
def basicSolution(A):
# 0(N*log(N) time complexity
retresult = 1; # the smallest integer we can return, if it is not in the array
A.sort()
for i in A:
if i > 0:
if i==retresult: retresult += 1 #increment the result since the current result exists in the array
elif i>retresult: break # we can go out of the loop since we found a bigger number than our current positive integer result
else:
continue; # negative numbers and 0 don't need any work
return retresult
hashSolution is my take on what is described in the above article, in the "use hashing" paragraph. As I am new to Python, please let me know if you have any improvements to this code (it does work though against my test cases), and what time complexity this has?
def hashSolution(A):
# 0(N) time complexity, I think? but requires 0(N) extra space (requirement states to use 0(N) space
table = {}
for i in A:
if i > 0:
table[i] = True # collision/duplicate will just overwrite
for i in range(1,100000+1): # the problem says that the array has a maximum of 100,000 integers
if not(table.get(i)): return i
return 1 # default
Finally, the actual 0(N) solution (O(n) time and O(1) extra space solution) I am having trouble understanding. I understand that negative/0 values are pushed at the back of the array, and then we have an array of just positive values. But I do not understand the findMissingPositive function - could anyone please describe this with Python code/comments? With an example perhaps? I've been trying to work through it in Python and just cannot figure it out :(