JavaScript does not support the concept of multiple inheritance. It also does not implement syntax for mixin and/or trait based composition. But unlike the former, the latter can be achieved by e.g. function and delegation based mixin patterns.
Thus, one first needs to figure out which parts of a composable object system should build the 'is a' relationship and which parts are behavior ('can do' / 'has a') that might get reused by/at different parts/levels of the object system.
The OP already has done this work. The example code that will be provided below is just going to introduce different function based mixin patterns via providing implementations of some behaviors like withLivingBeingBasics
and withFlyingAbility
... with the first mixin covering the OP's Living_being
class and the second one covering Flying_object
.
For better code reuse there are 2 additional mixins, withExposeClassName
and withExposeVector
that, for the reason of demonstration, compose into the withExposeClassNameAndVector
mixin compound.
From this possible base setup, that follows the OP's example, one could continue with shaping the classes.
With the Animal
class one is free of choosing where mixin composition shall take place. Following the provided original example, composition at class/prototype level is the better option instead of applying the behavior at construction/instantiation time from within the constructor.
After applying withExposeClassNameAndVector
and withLivingBeingBasics
to Animal.prototype
, any animal instance via prototypal delegation is capable of being invoked at getClassName
and getVector
as well as at metabolize
and reproduce
. Thus, at this point, both mixin composition (explicit delegation via call
to prototype
) and inheritance (automatically running delegation via prototype chain) take place.
The Fish
class is implemented easily. As with the OP's example one just follows a simplified inheritance pattern via Fish.prototype = new Animal;
. In addition, as already featured with the Animal
base class, a class' name gets assigned to its prototype
object.
Bird
repeats the base patterns of Fish
with the exception of featuring its own vector
property that now is three dimensional instead of the otherwise prototypal two dimensional one. And since a common bird is supposed to somehow feature flying behavior Bird.prototype
has to acquire it from withFlyingAbility
.
Following still the OP's example, Ufo
also needs to have flying ability. And like a bird, an ufo too has to feature an own three dimensional vector
property. Thus the property gets assigned at construction/instantiation time and all the needed behavior gets applied from withExposeClassNameAndVector
and from withFlyingAbility
to Ufo.prototype
.
The provided approach intends to prove that ... the most atomar mixin implements exactly one behavior, ... mixins are not necessarily supposed to introduce state but a behavior might operate upon state, ... mixins can be composed from other mixins, ... they always get applied at object level, either to already existing objects or to the prototype
object itself or at composition time from within a constructor function ...
var withLivingBeingBasics = (function () { // function based mixin
function metabolize() { // implement beahvior once.
console.log('every living being features some kind of metabolism.');
}
function reproduce() { // implement beahvior once.
console.log('every living being features some kind of reproduction.');
}
return function() {
this.metabolize = metabolize; // assign shared code.
this.reproduce = reproduce; //
}
}());
var withFlyingAbility = (function () {
function liftOffAerodynamically() {
this.vector.z = 5;
console.log('flying needs some kind of aerodynamic lift.');
}
function monitorAltitudeDifference() {
console.log('monitoring altitude difference : ', this.vector.z);
}
return function() {
this.liftOffAerodynamically = liftOffAerodynamically;
this.monitorAltitudeDifference = monitorAltitudeDifference;
}
}());
var withExposeVector = (function () {
function getVector() {
console.log('vector : ', this.vector);
}
return function() {
this.getVector = getVector;
}
}());
var withExposeClassName = (function () {
function getClassName() {
console.log('Instance of... ', this.className);
}
return function() {
this.getClassName = getClassName;
}
}());
var withExposeClassNameAndVector = function () { // mixin compound.
withExposeClassName.call(this);
withExposeVector.call(this);
}
function Animal() {
//withLivingBeingBasics.call(this); // mixing in for the given example is …
//this.className = 'Animal'; // … better at **class**/prototype level.
this.vector = {x: 0, y: 0};
}
// the many ways of augmenting the `prototype` ...
Object.assign(Animal.prototype, { className: 'Animal' });
//withExposeClassName.call(Animal.prototype);
//withExposeVector.call(Animal.prototype);
withExposeClassNameAndVector.call(Animal.prototype);
withLivingBeingBasics.call(Animal.prototype);
function Fish() {}
Fish.prototype = new Animal;
Object.assign(Fish.prototype, { className: 'Fish' });
function Bird() {
this.vector = {x: 0, y: 0, z: 0};
}
Bird.prototype = new Animal;
Object.assign(Bird.prototype, { className: 'Bird' });
withFlyingAbility.call(Bird.prototype);
function Ufo() {
this.vector = {x: 0, y: 0, z: 0};
}
Object.assign(Ufo.prototype, { className: 'Ufo' });
//withExposeClassName.call(Ufo.prototype);
//withExposeVector.call(Ufo.prototype);
withExposeClassNameAndVector.call(Ufo.prototype);
withFlyingAbility.call(Ufo.prototype);
var fish = new Fish;
var bird = new Bird;
var ufo = new Ufo;
console.log('(fish instanceof Animal) ? ', (fish instanceof Animal));
console.log('(fish instanceof Fish) ? ', (fish instanceof Fish));
fish.getClassName();
fish.metabolize();
fish.reproduce();
fish.getVector();
console.log('(bird instanceof Animal) ? ', (bird instanceof Animal));
console.log('(bird instanceof Bird) ? ', (bird instanceof Bird));
bird.getClassName();
bird.metabolize();
bird.reproduce();
bird.getVector();
bird.monitorAltitudeDifference();
bird.liftOffAerodynamically();
bird.monitorAltitudeDifference();
console.log('(ufo instanceof Ufo) ? ', (ufo instanceof Ufo));
ufo.getClassName();
ufo.getVector();
ufo.monitorAltitudeDifference();
ufo.liftOffAerodynamically();
ufo.monitorAltitudeDifference();
.as-console-wrapper { max-height: 100%!important; top: 0; }
For further reading on SO one might give the following related questions and solutions a chance ...