I'm in the process of creating a forecast based on the hts package but before getting this far I need to clean the data for outliers and missing values.
For this I thought of using the tsclean function in the forecast package. I got my data stored in data frame with multiple columns (time series) that I wish to get cleaned. I can get the function to work when only having one time serie, but since I do have quite a lot i'm looking for a smart way to do this.
When running the code:
SFA5 <- ts(SFA4, frequency=12, start=c(2012,1), end=c(2017,10))
ggt <- tsclean(SFA5[1:70, 1:94], replace.missing = TRUE)
I get this error message:
Error in na.interp(x, lambda = lambda) : The time series is not univariate.
The data is here:
https://www.dropbox.com/s/dow2jpuv5unmtgd/Data1850.xlsx?dl=0
My question is: what am i doing wrong or is the only solution to do a loop sequence