I will explain you in some steps:
First step:
For solving this kind of range problems between X
and Y
always make it simple by counting between 0 to X
and 0 to Y-1
, then subtract the result. i.e. if you have a function like f(N)
that calculates the numbers that have at least half their digits the same between 0 and N, then your final result is:
f(X) - f(Y-1)
Second step:
Next we have to compute f(N). We split this function into 2 sub functions, one for calculating the result for numbers having the same number of digits with N (lets call it f_equal), and the other for counting the qualified numbers having digits less the N (let's call it f_less). E.g. if N is 19354, we count the qualified numbers between 0 to 9999, then in another method count the favorite numbers between 10000 to 19354, after that we sum up the result. Next, I'll explain you how to implement these two methods.
Third step:
Here, we want to compute f_less method. you can do it by some math, but I always prefer to write a simple DP for solving these tasks. I will write the recursive function whether you can use memoization or you can make it bottom-up with some loops (I'll leave it as a practice for you).
long long f_less(int curDigit, int favNum, int favNumCountSoFar, int nonFavNum, int nonFavNumCountSoFar, int maxDigit){
if(curDigit == maxDigit ){
//for numbers with even maxDigit there may be a case when we have 2 favorite numbers
//and we should count them only once. like 522552
if(favNumCountSoFar*2 == maxDigit && favNumCountSoFar == nonFavNumCountSoFar) return 1;
if(2*favNumCountSoFar >= maxDigit) return 2;
return 0;
}
long long res = 0;
for(int i=(curDigit==0?1:0);i<=9;++i) //skip the leading zero
if(i==favNum)
res += f_less(curDigit+1, favNum, favNumCountSoFar + 1, nonFavNum, nonFavNumCountSoFar,maxDigit);
else
res += f_less(curDigit+1, favNum, favNumCountSoFar, i, (i==nonFavNum?nonFavNumCountSoFar+1:1),maxDigit);
return res;
}
And call it for all numbers through 0 to 9:
long long res = 0;
for(int maxDigit = 1; maxDigit < NUMBER_OF_DIGITS(N); ++maxDigit)
for(int favNumber = 0; favNumber < 10; ++favNumber)
res += f_less(0, favNumber, 0, -1, 0, maxDigit);
Fourth Step:
Finally we have to compute f_equal. Here we have to keep the number in a string to always check whether we are still in the range below N or not in the recursive function. Here is the implementation of f_equal (again use memoization or make it bottom-up):
string s = NUM_TO_STRING(N);
int maxDigit = s.size();
long long f_equal(int curDigit, int favNum, int favNumCountSoFar,int nonFavNum, int nonFavNumCountSoFar, bool isEqual){ //isEqual checks that whether our number is equal to N or it's lesser than it
if(curDigit == maxDigit ){
//for numbers with even maxDigit there may be a case when we have 2 favorite numbers
//and we should count them only once. like 522552
if(favNumCountSoFar*2 == maxDigit && favNumCountSoFar == nonFavNumCountSoFar) return 1;
if(2*favNumCountSoFar >= maxDigit) return 2;
return 0;
}
long long res = 0;
for(int i=(curDigit==0?1:0);i<=9;++i){ //skip the leading zero
if(isEqual && i>(s[curDigit]-'0')) break;
if(i==favNum)
res += f_equal(curDigit+1, favNum, favNumCountSoFar + 1, nonFavNum, nonFavNumCountSoFar, isEqual && (i==(s[curDigit]-'0')));
else
res += f_equal(curDigit+1, favNum, favNumCountSoFar, i, (i==nonFavNum?nonFavNumCountSoFar+1:1), isEqual && (i==(s[curDigit]-'0')));
}
return res;
}
And call it:
long long res = 0;
for(int favNumber = 0; favNumber < 10; ++favNumber)
res += f_equal(0, favNumber,0, -1, 0, true);
The final result is res/2
. The code is tested and works well.