I'm trying to create a 2d array (which is a six column and lots of rows) with numpy random choice with unique values between 1 and 50 for every row not all of the array
np.sort(np.random.choice(np.arange(1,50),size=(100,6),replace=False))
But this raises an error.
ValueError: Cannot take a larger sample than population when 'replace=False'
Is it possible to make this with an one liner without a loop
Edit
Okey i get the answer.
These are the results with jupyter %time cellmagic
#@James' solution
np.stack([np.random.choice(np.arange(1,50),size=6,replace=False) for i in range(1_000_000)])
Wall time: 25.1 s
#@Divakar's solution
np.random.rand(1_000_000, 50).argpartition(6,axis=1)[:,:6]+1
Wall time: 1.36 s
#@CoryKramer's solution
np.array([np.random.choice(np.arange(1, 50), size=6, replace=False) for _ in range(1_000_000)])
Wall time: 25.5 s
I changed dtypes of np.empty and np.random.randint on @Paul Panzer's solution because it was not working on my pc.
3.6.0 |Anaconda custom (64-bit)| (default, Dec 23 2016, 11:57:41) [MSC v.1900 64 bit (AMD64)]
Fastest one is
def pp(n):
draw = np.empty((n, 6), dtype=np.int64)
# generating random numbers is expensive, so draw a large one and
# make six out of one
draw[:, 0] = np.random.randint(0, 50*49*48*47*46*45, (n,),dtype=np.uint64)
draw[:, 1:] = np.arange(50, 45, -1)
draw = np.floor_divide.accumulate(draw, axis=-1)
draw[:, :-1] -= draw[:, 1:] * np.arange(50, 45, -1)
# map the shorter ranges (:49, :48, :47) to the non-occupied
# positions; this amounts to incrementing for each number on the
# left that is not larger. the nasty bit: if due to incrementing
# new numbers on the left are "overtaken" then for them we also
# need to increment.
for i in range(1, 6):
coll = np.sum(draw[:, :i] <= draw[:, i, None], axis=-1)
collidx = np.flatnonzero(coll)
if collidx.size == 0:
continue
coll = coll[collidx]
tot = coll
while True:
draw[collidx, i] += coll
coll = np.sum(draw[collidx, :i] <= draw[collidx, i, None], axis=-1)
relidx = np.flatnonzero(coll > tot)
if relidx.size == 0:
break
coll, tot = coll[relidx]-tot[relidx], coll[relidx]
collidx = collidx[relidx]
return draw + 1
#@Paul Panzer' solution
pp(1_000_000)
Wall time: 557 ms
Thank you all.