take time to read my answer here: (has similar volumes to yours)
500 millions rows, 15 million row range scan in 0.02 seconds.
MySQL and NoSQL: Help me to choose the right one
then amend your table engine to innodb as follows:
create table tag_date_value
(
tag_id smallint unsigned not null, -- i prefer ints to chars
tag_date datetime not null, -- can we make this date vs datetime ?
value int unsigned not null default 0, -- or whatever datatype you require
primary key (tag_id, tag_date) -- clustered composite PK
)
engine=innodb;
you might consider the following as the primary key instead:
primary key (tag_id, tag_date, value) -- added value save some I/O
but only if value isnt some LARGE varchar type !
query as before:
select
tag_date,
value
from
tag_date_value
where
tag_id = 1 and
tag_date between 'x' and 'y'
order by
tag_date;
hope this helps :)
EDIT
oh forgot to mention - dont use alter table to change engine type from mysiam to innodb but rather dump the data out into csv files and re-import into a newly created and empty innodb table.
note i'm ordering the data during the export process - clustered indexes are the KEY !
Export
select * into outfile 'tag_dat_value_001.dat'
fields terminated by '|' optionally enclosed by '"'
lines terminated by '\r\n'
from
tag_date_value
where
tag_id between 1 and 50
order by
tag_id, tag_date;
select * into outfile 'tag_dat_value_002.dat'
fields terminated by '|' optionally enclosed by '"'
lines terminated by '\r\n'
from
tag_date_value
where
tag_id between 51 and 100
order by
tag_id, tag_date;
-- etc...
Import
import back into the table in correct order !
start transaction;
load data infile 'tag_dat_value_001.dat'
into table tag_date_value
fields terminated by '|' optionally enclosed by '"'
lines terminated by '\r\n'
(
tag_id,
tag_date,
value
);
commit;
-- etc...