Alright, so I am working on creating an Android audio visualization app. The problem is, what I get form the method getFft() doesn't jive with what google says it should produce. I traced the source code all the way back to C++, but I am not familiar enough with C++ or FFT to actually understand what is happening.
I will try and include everything needed here:
(Java) Visualizer.getFft(byte[] fft)
/**
* Returns a frequency capture of currently playing audio content. The capture is a 8-bit
* magnitude FFT. Note that the size of the FFT is half of the specified capture size but both
* sides of the spectrum are returned yielding in a number of bytes equal to the capture size.
* {@see #getCaptureSize()}.
* <p>This method must be called when the Visualizer is enabled.
* @param fft array of bytes where the FFT should be returned
* @return {@link #SUCCESS} in case of success,
* {@link #ERROR_NO_MEMORY}, {@link #ERROR_INVALID_OPERATION} or {@link #ERROR_DEAD_OBJECT}
* in case of failure.
* @throws IllegalStateException
*/
public int getFft(byte[] fft)
throws IllegalStateException {
synchronized (mStateLock) {
if (mState != STATE_ENABLED) {
throw(new IllegalStateException("getFft() called in wrong state: "+mState));
}
return native_getFft(fft);
}
}
(C++) Visualizer.getFft(uint8_t *fft)
status_t Visualizer::getFft(uint8_t *fft)
{
if (fft == NULL) {
return BAD_VALUE;
}
if (mCaptureSize == 0) {
return NO_INIT;
}
status_t status = NO_ERROR;
if (mEnabled) {
uint8_t buf[mCaptureSize];
status = getWaveForm(buf);
if (status == NO_ERROR) {
status = doFft(fft, buf);
}
} else {
memset(fft, 0, mCaptureSize);
}
return status;
}
(C++) Visualizer.doFft(uint8_t *fft, uint8_t *waveform)
status_t Visualizer::doFft(uint8_t *fft, uint8_t *waveform)
{
int32_t workspace[mCaptureSize >> 1];
int32_t nonzero = 0;
for (uint32_t i = 0; i < mCaptureSize; i += 2) {
workspace[i >> 1] = (waveform[i] ^ 0x80) << 23;
workspace[i >> 1] |= (waveform[i + 1] ^ 0x80) << 7;
nonzero |= workspace[i >> 1];
}
if (nonzero) {
fixed_fft_real(mCaptureSize >> 1, workspace);
}
for (uint32_t i = 0; i < mCaptureSize; i += 2) {
fft[i] = workspace[i >> 1] >> 23;
fft[i + 1] = workspace[i >> 1] >> 7;
}
return NO_ERROR;
}
(C++) fixedfft.fixed_fft_real(int n, int32_t *v)
void fixed_fft_real(int n, int32_t *v)
{
int scale = LOG_FFT_SIZE, m = n >> 1, i;
fixed_fft(n, v);
for (i = 1; i <= n; i <<= 1, --scale);
v[0] = mult(~v[0], 0x80008000);
v[m] = half(v[m]);
for (i = 1; i < n >> 1; ++i) {
int32_t x = half(v[i]);
int32_t z = half(v[n - i]);
int32_t y = z - (x ^ 0xFFFF);
x = half(x + (z ^ 0xFFFF));
y = mult(y, twiddle[i << scale]);
v[i] = x - y;
v[n - i] = (x + y) ^ 0xFFFF;
}
}
(C++) fixedfft.fixed_fft(int n, int32_t *v)
void fixed_fft(int n, int32_t *v)
{
int scale = LOG_FFT_SIZE, i, p, r;
for (r = 0, i = 1; i < n; ++i) {
for (p = n; !(p & r); p >>= 1, r ^= p);
if (i < r) {
int32_t t = v[i];
v[i] = v[r];
v[r] = t;
}
}
for (p = 1; p < n; p <<= 1) {
--scale;
for (i = 0; i < n; i += p << 1) {
int32_t x = half(v[i]);
int32_t y = half(v[i + p]);
v[i] = x + y;
v[i + p] = x - y;
}
for (r = 1; r < p; ++r) {
int32_t w = MAX_FFT_SIZE / 4 - (r << scale);
i = w >> 31;
w = twiddle[(w ^ i) - i] ^ (i << 16);
for (i = r; i < n; i += p << 1) {
int32_t x = half(v[i]);
int32_t y = mult(w, v[i + p]);
v[i] = x - y;
v[i + p] = x + y;
}
}
}
}
If you made it through all that, you are awesome! So my issue, is when I call the java method getFft() I end up with negative values, which shouldn't exist if the returned array is meant to represent magnitude. So my question is, what do I need to do to make the array represent magnitude?
EDIT: It appears my data may actually be the Fourier coefficients. I was poking around the web and found this. The applet "Start Function FFT" displays a graphed representation of coefficients and it is a spitting image of what happens when I graph the data from getFft(). So new question: Is this what my data is? and if so, how do I go from the coefficients to a spectral analysis of it?