Correlation between a 2D matrix/array and 1D array/vector :
We can adapt corr2_coeff_rowwise
for correlation between a 2D
array/matrix and a 1D array/vector, like so -
def corr2_coeff_2d_1d(A, B):
# Rowwise mean of input arrays & subtract from input arrays themeselves
A_mA = A - A.mean(1,keepdims=1)
B_mB = B - B.mean()
# Sum of squares across rows
ssA = np.einsum('ij,ij->i',A_mA,A_mA)
ssB = B_mB.dot(B_mB)
# Finally get corr coeff
return A_mA.dot(B_mB)/np.sqrt(ssA*ssB)
To shuffle each row and do this for all rows, we can make use of np.random.shuffle
. Now, this shuffle function works along the first axis. So, to solve our case, we need to feed in the transposed version. Also, note that this shuffling would be done in-place. So, if original dataframe is needed elsewhere, do make a copy before processing. Thus, the solution would be -
Hence, let's use this to solve our case -
# Extract underlying arry data for faster NumPy processing in loop later on
a = df.values
s_ar = s.values
# Setup array for row-indexing with NumPy's advanced indexing later on
r = np.arange(a.shape[0])[:,None]
for i in range(N):
# Get shuffled indices per row with `rand+argsort/argpartition` trick from -
# https://stackoverflow.com/a/45438143/
idx = np.random.rand(*a.shape).argsort(1)
# Shuffle array data with NumPy's advanced indexing
shuffled_a = a[r, idx]
# Compute correlation
corr = corr2_coeff_2d_1d(shuffled_a, s_ar)
Optimized version #1
Now, we could pre-compute for the parts involving the series that stays the same between iterations. Hence, a further optimized version would look like this -
a = df.values
s_ar = s.values
r = np.arange(a.shape[0])[:,None]
B = s_ar
B_mB = B - B.mean()
ssB = B_mB.dot(B_mB)
A = a
A_mean = A.mean(1,keepdims=1)
for i in range(N):
# Get shuffled indices per row with `rand+argsort/argpartition` trick from -
# https://stackoverflow.com/a/45438143/
idx = np.random.rand(*a.shape).argsort(1)
# Shuffle array data with NumPy's advanced indexing
shuffled_a = a[r, idx]
# Compute correlation
A = shuffled_a
A_mA = A - A_mean
ssA = np.einsum('ij,ij->i',A_mA,A_mA)
corr = A_mA.dot(B_mB)/np.sqrt(ssA*ssB)
Benchmarking
Setup inputs with actual use-case shapes/sizes
In [302]: df = pd.DataFrame(np.random.rand(10000,1000))
In [303]: s = pd.Series(df.iloc[0])
1. Original method
In [304]: %%timeit
...: df_sh = df.apply(np.random.permutation, axis=1)
...: corr = df_sh.corrwith(s, axis = 1)
1 loop, best of 3: 1.99 s per loop
2. Proposed method
The pre-processing part (only done once before starting loop, so not including in timings) -
In [305]: a = df.values
...: s_ar = s.values
...: r = np.arange(a.shape[0])[:,None]
...:
...: B = s_ar
...: B_mB = B - B.mean()
...: ssB = B_mB.dot(B_mB)
...:
...: A = a
...: A_mean = A.mean(1,keepdims=1)
Part of proposed solution that runs in loop -
In [306]: %%timeit
...: idx = np.random.rand(*a.shape).argsort(1)
...: shuffled_a = a[r, idx]
...:
...: A = shuffled_a
...: A_mA = A - A_mean
...: ssA = np.einsum('ij,ij->i',A_mA,A_mA)
...: corr = A_mA.dot(B_mB)/np.sqrt(ssA*ssB)
1 loop, best of 3: 675 ms per loop
Thus, we are seeing a speedup of around 3x
here!