The only way to makes this really go faster, is to move as much work as possible to the database, i.e. the calculations and the sorting. It wasn't easy, but with the help of this answer I managed to actually write a query for that in almost pure Django:
class Unnest(models.Func):
function = 'UNNEST'
class Abs(models.Func):
function = 'ABS'
class SubquerySum(models.Subquery):
template = '(SELECT sum(%(field)s) FROM (%(subquery)s) _sum)'
x = [0.3, 0, 1, 0.5]
pairdiffs = Model.objects.filter(pk=models.OuterRef('pk')).annotate(
pairdiff=Abs(Unnest('values')-Unnest(models.Value(x, ArrayField(models.FloatField())))),
).values('pairdiff')
entries = Model.objects.all().annotate(
diff=SubquerySum(pairdiffs, field='pairdiff')
).order_by('diff')
The unnest
function turns each element of the values
into a row. In this case it happens twice, but the two resulting columns are instantly subtracted and made positive. Still, there are as many rows per pk
as there are values
. These need to be summed, but that's not as easy as it sounds. The column can't be simply be aggregated. This was by far the most tricky part—even after fiddling with it for so long, I still don't quite understand why Postgres needs this indirection. Of the few options there are to make it work, I believe a subquery is the single one expressible in Django (and only as of 1.11).
Note that the above behaves exactly the same as with zip
, i.e. the when one array is longer than the other, the remainder is ignored.
Further improvements
While it will be a lot faster already when you don't have to retrieve all rows anymore and loop over them in Python, it doesn't change yet that it results in a full table scan. All rows will have to be processed, every single time. You can do better, though. Have a look into the cube
extension. Use it to calculate the L1 distance—at least, that seems what you're calculating—directly with the <#>
operator. That will require the use of RawSQL
or a custom Expression
. Then add a GiST index on the SQL expression cube("values")
, or directly on the field if you're able to change the type from float[]
to cube
. In case of the latter, you might have to implement your own CubeField
too—I haven't found any package yet that provides it. In any case, with all that in place, top-N queries on the lowest distance will be fully indexed hence blazing fast.