I have some classifiers which I want to evaluate on the one sample. This task can be ran in parallel since they are independent of each other. This means that I want to parallelize it.
I tried it with python and also as a bash script. The problem is that when I run it the program for the first time, it takes like 30s-40s to finish. When I run the program multiple times consecutively, it takes just 1s-3s to finish. Even If I fed classifiers with different input I got different result so it seems that there is no caching. When I run some other program and afterwards rerun the program then it again takes 40s to finish.
I also observed in htop that CPUs are not that much utilized when the program is run for the first time but then when I rerun it again and again the CPUs are fully utilized.
Can someone please explain me this strange behaviour? How can I avoid it so that even the first run of the program will be fast?
Here is the python code:
import time
import os
from fastText import load_model
from joblib import delayed, Parallel, cpu_count
import json
os.system("taskset -p 0xff %d" % os.getpid())
def format_duration(start_time, end_time):
m, s = divmod(end_time - start_time, 60)
h, m = divmod(m, 60)
return "%d:%02d:%02d" % (h, m, s)
def classify(x, classifier_name, path):
f = load_model(path + os.path.sep + classifier_name)
labels, probabilities = f.predict(x, 2)
if labels[0] == '__label__True':
return classifier_name
else:
return None
if __name__ == '__main__':
with open('classifier_names.json') as json_data:
classifiers = json.load(json_data)
x = "input_text"
Parallel(n_jobs=cpu_count(), verbose=100, backend='multiprocessing', pre_dispatch='all') \
(delayed(perform_binary_classification)
(x, classifier, 'clfs/') for
classifier in classifiers)
end_time = time.time()
print(format_duration(start_time, end_time))
Here is the bash code:
#!/usr/bin/env bash
N=4
START_TIME=$SECONDS
open_sem(){
mkfifo pipe-$$
exec 3<>pipe-$$
rm pipe-$$
local i=$1
for((;i>0;i--)); do
printf %s 000 >&3
done
}
run_with_lock(){
local x
read -u 3 -n 3 x && ((0==x)) || exit $x
(
"$@"
printf '%.3d' $? >&3
)&
}
open_sem $N
for d in classifiers/* ; do
run_with_lock ~/fastText/fasttext predict "$d" test.txt
done
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo time taken $ELAPSED_TIME seconds
EDITED
The bigger picture is that I am running flask app with 2 API methods. Each of them calls the function that parallelize the classification. When I am doing requests, it behaves the same way like this program below. First request to method A takes a lot and then subsequent requests take like 1s. When I switch to method B it is the same behavior as with method A. If I switch between method A and method B several times like A,B,A,B then each request takes like 40s to finish.