I have created a Deep Convolution Neural Network to classify individual pixels in an image. My training data will always be the same size (32x32x7), but my testing data can be any size.
Currently, my model will only work on images that are the same size. I have used the tensorflow mnist tutorial extensively to help me construct my model. In this tutorial, we only use 28x28 images. How would the following mnist model be changed to accept images of any size?
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
x_image = tf.reshape(x, [-1, 28, 28, 1])
To make things a little bit more complicated, my model has transpose convolutions where the output shape needs to be specified. How would I adjust the following line of code so that the transpose convolution will output a shape that is the same size of the input.
DeConnv1 = tf.nn.conv3d_transpose(layer1, filter = w, output_shape = [1,32,32,7,1], strides = [1,2,2,2,1], padding = 'SAME')