I'd like to speed up my training routine that uses the Estimator API with input_fn wrote using tf.data.Dataset
.
My implementation takes 2 second to prepare a batch of data and then runs training on GPU for 1 sec, and then start over preparing a batch. Which is really inefficient.
I'm looking for a way to prepare the batches asynchronously and upload them to GPU to speed up the training. Or alternatively for a way to cache datasets between invocations of input_fn
(the dataset.cache()
doesn't seems to be a good choice as the dataset has to be recreated on each input_fn invocation).
Here is a simplified version of my code:
def input_fn(filenames, labels, epochs):
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_read_wav, num_parallel_calls=num_map_threads)
if shuffle:
dataset = dataset.shuffle(buffer_size=len(labels))
dataset = dataset.map(_post_process, num_parallel_calls=num_map_threads)
dataset = dataset.map(lambda wav, label: ({'wav': wav}, label))
dataset = dataset.batch(128)
dataset = dataset.repeat(epochs) # to iterate over the training set forever
iterator = dataset.dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
train_input_fn = lambda : input_fn(train_files, train_labels, None)
eval_input_fn = lambda : input_fn(eval_files, eval_labels, 1)
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=45000)
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
I've noticed that the Estimator API is under active development and in the master branch of tensorflow the input_fn can return datasets already, so maybe I'm asking too early and this feature isn't ready yet. But if so, please provide a ticket where this implementation can be tracked.