I am trying to build an implementation of a white paper on Dynamic room pricing model for hotel revenue management systems. In case this link dies in the future, i am pasting in the relevant section here:
My current implmentation thus far is quite massively broken, as I really do not fully comprehend how to solve non-linear maximization equations.
# magical lookup table that returns demand based on those inputs
# this will eventually be a db lookup against past years rental activity and not hardcoded to a specific value
def demand(dateFirstNight, duration):
return 1
# magical function that fetches the price we have allocated for a room on this date to existing customers
# this should be a db lookup against previous stays, and not hardcoded to a specific value
def getPrice(date):
return 75
# Typical room base price
# Defined as: Nominal price of the hotel (usually the average historical price)
nominalPrice = 89
# from the white paper, but perhaps needs to be adjusted in the future using the methods they explain
priceElasticity = 2
# this is an adjustable constant it depends how far forward we want to look into the future when optimizing the prices
# likely this will effect how long this will take to run, so it will be a balancing game with regards to accuracy vs runtime
numberOfDays = 30
def roomsAlocated(dateFirstNight, duration)
roomPriceSum = 0.0
for date in range(dateFirstNight, dateFirstNight+duration-1):
roomPriceSum += getPrice(date)
return demand(dateFirstNight, duration) * (roomPriceSum/(nominalPrice*duration))**priceElasticity
def roomsReserved(date):
# find all stays that contain this date, this
def maximizeRevenue(dateFirstNight):
# we are inverting the price sum which is to be maximized because mystic only does minimization
# and when you minimize the inverse you are maximizing!
return (sum([getPrice(date)*roomsReserved(date) for date in range(dateFirstNight, dateFirstNight+numberOfDays)]))**-1
def constraint(x): # Ol - totalNumberOfRoomsInHotel <= 0
return roomsReserved(date) - totalNumberOfRoomsInHotel
from mystic.penalty import quadratic_inequality
@quadratic_inequality(constraint, k=1e4)
def penalty(x):
return 0.0
from mystic.solvers import diffev2
from mystic.monitors import VerboseMonitor
mon = VerboseMonitor(10)
bounds = [0,1e4]*numberOfDays
result = diffev2(maximizeRevenue, x0=bounds, penalty=penalty, npop=10, gtol=200, disp=False, full_output=True, itermon=mon, maxiter=M*N*100)
Can anyone that is familiar with working with mystic give me some advice on how to implement this?