I am using the getting started example of Tensorflow
CNN and updating parameters to my own data but since my model is large (244 * 244 features) I got OutOfMemory
error.
I am running the training on Ubuntu 14.04 with 4 CPUs and 16Go of RAM.
Is there a way to shrink my data so I don't get this OOM error?
My code looks like this:
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="path/to/model")
# Load the data
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
batch_size=5,
shuffle=True)
# Train the model
mnist_classifier.train(
input_fn=train_input_fn,
steps=100,
hooks=[logging_hook])