I am currently attempting to run an object detector called YOLO (darkflow).
I have installed CUDA 8.0, CudNN 5.1, tensorflow 1.0 and tensorflow-gpu (both installed via pip).
I'm testing YOLO by using the following command line:
sudo python3 ./flow --model cfg/yolo.cfg --load yolo.weights --demo dji_0004.MP4 --gpu 1.0
The problem is: even using --gpu 1.0 it runs at ~0.8 FPS.
While running it, I used nvidia-smi to monitor my GPU and this is what I get:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.82 Driver Version: 375.82 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 650 Off | 0000:01:00.0 N/A | N/A |
| 16% 40C P0 N/A / N/A | 444MiB / 980MiB | N/A Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 Not Supported |
+-----------------------------------------------------------------------------+
Apparently tensorflow isn't using running it on my GPU.
GTX 650 has 3.0 compute capability according to NVIDIA, so using tensorflow-gpu should be no problem.