I created two tensors (one depending upon another) as follows:
weights = tf.random_normal(shape=(3, 3, 1, 64))
filters = get_filters(weights) # get_filters does some operation on weights
So, after above operations, weights and filters looks like
<tf.Tensor 'random_normal_1:0' shape=(3, 3, 1, 64) dtype=float32>
<tf.Tensor 'filters_1/weights:0' shape=(5, 3, 3, 1, 64) dtype=float32>
Now, I pass these tensors to the following function
def get_alphas(weights, filters, no_filters=5,
epochs=500, name=None):
with tf.name_scope(name, default_name="alpha_scope"):
weights = tf.reshape(weights, [-1], name="reshaped_weights")
filters = tf.reshape(filters, [no_filters, -1], name="reshaped_binary_filters")
alphas = tf.Variable(tf.zeros(shape=(no_filters, 1)), name="alphas")
weighted_sum = tf.reduce_sum(tf.multiply(alphas, filters), axis=0, name="weighted_sum")
error = tf.square(weights - weighted_sum, name="error")
loss = tf.reduce_mean(tf.reshape(error, [-1]), name="loss")
# Optimizer
optimizer = tf.train.AdamOptimizer()
training_op = optimizer.minimize(loss, name="training_op")
print(tf.global_variables())
init = tf.variables_initializer([alphas])
with tf.Session() as sess:
init.run()
epoch = 0
while epoch < epochs:
_, loss_train = sess.run([training_op, loss]) # <-- this is where the error is generated
print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format(
epoch+1, epochs,
epoch * 100 / epochs,
loss_train),
end="")
epoch += 1
return tf.convert_to_tensor(sess.run(alphas))
On calling get_alphas(weights, filters)
, I get the following errors
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value alpha_scope/beta1_power
[[Node: alpha_scope/beta1_power/read = Identity[T=DT_FLOAT, _class=["loc:@alpha_scope/alphas"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](alpha_scope/beta1_power)]]
[[Node: alpha_scope/loss/_1 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_115_alpha_scope/loss", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
So, I print all the variables in tensorflow using tf.global_variables()
and there are some unknown variables (beta1_power
, beta2_power
) that I didn't define and that's what causing this error
[<tf.Variable 'alpha_scope/alphas:0' shape=(5, 1) dtype=float32_ref>,
<tf.Variable 'alpha_scope/beta1_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'alpha_scope/beta2_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'alpha_scope/alphas/Adam:0' shape=(5, 1) dtype=float32_ref>,
<tf.Variable 'alpha_scope/alphas/Adam_1:0' shape=(5, 1) dtype=float32_ref>]
Any ideas, how these variables are being created? or how to initialize them?
I cannot use tf.global_variables_initializer()
as it might reset some of the variables that might be in state.