I'm using the caret package in R to fit a LASSO regression model. My code runs fine, however I would like to extract the Intercept for the final model so I can build a scoring key using the selected predictors and coefficients.
For example, if "Extraversion" is the variable I am trying to model using survey items, I would like to produce the following scoring key:
Intercept + Survey_Item_1*Slope + Survey_Item_2*Slope + and so on
FWIW, I am able to extract the coefficients for the predictors.
My code for reference:
##Create Training & test set
set.seed(9808)
ind <- sample(0:1, nrow(df), replace=T, prob=c(.75,.25))
train <- df[ind==0,]
test <- df[ind==1,]
ctrl <- trainControl(method = "repeatedcv", number=5, repeats = 5)
##Train Lasso model
fit.lasso <- train(Extraversion ~., , data=train, method="lasso", preProc=c('scale','center','nzv'), trControl=ctrl)
fit.lasso
predict.enet(fit.lasso$finalModel, type='coefficients', s=fit.lasso$bestTune$fraction, mode='fraction')
##Fit models to test data
lasso_test<- predict(fit.lasso, newdata=test, na.action="na.pass")
postResample(pred = lasso_test, obs = test[,c(1)])