I used the accepted answer in this question to obtain local maxima in a numpy array of 2 or more dimensions so I could assign labels to them. Now I would like to also assign these labels to neighboring cells in the array, depending on gradient – i.e. a cell gets the same label as the neighboring cell with the highest value. This way I can iteratively assign labels to my entire array.
Assume I have an array A
like
>>> A = np.array([[ 1. , 2. , 2.2, 3.5],
[ 2.1, 2.4, 3. , 3.3],
[ 1. , 3. , 3.2, 3. ],
[ 2. , 4.1, 4. , 2. ]])
Applying the maximum_filter
I get
>>> scipy.ndimage.filters.maximum_filter(A, size=3)
array([[ 2.4, 3. , 3.5, 3.5],
[ 3. , 3.2, 3.5, 3.5],
[ 4.1, 4.1, 4.1, 4. ],
[ 4.1, 4.1, 4.1, 4. ]])
Now, for every cell in this array I would like to have the coordinates of the maximum found by the filter, i.e.
array([[[1,1],[1,2],[0,3],[0,3]],
[[2,1],[2,2],[0,3],[0,3]],
[[3,1],[3,1],[3,1],[3,2]],
[[3,1],[3,1],[3,1],[3,2]]])
I would then use these coordinates to assign my labels iteratively.
I can do it for two dimensions using loops, ignoring borders
highest_neighbor_coordinates = np.array([[(argmax2D(A[i-1:i+2, j-1:j+2])+np.array([i-1, j-1])) for j in range(1, A.shape[1]-1)] for i in range(1, A.shape[0]-1)])
but after seeing the many filter functions in scipy.ndimage
I was hoping there would be a more elegant and extensible (to >=3 dimensions) solution.