This is for C, if the language matters. If it goes down to assembly language, it sets things to negative using two's complements. And with the variable, you're storing the value "0" inside the variable int. Which I'm not entirely sure what happens.
I got: 1.90s user 0.01s system 99% cpu 1.928 total for the beneath code and I'm guessing most of the runtime was in adding up the counter variables.
int i;
int n;
i = 0;
while (i < 999999999)
{
n = 0;
i++;
n++;
}
I got: 4.56s user 0.02s system 99% cpu 4.613 total for the beneath code.
int i;
int n;
i = 0;
n = 5;
while (i < 999999999)
{
n *= -1;
i++;
n++;
}
return (0);
I don't particularly understand much about assembly, but it doesn't seem intuitive that using the two's complement operation takes more time than setting one thing to another. What's the underlying implementation that makes one faster than the other, and what's happening beneath the surface? Or is my test simply a bad one that doesn't accurately portray how quick it'll actually be in practice.
If it seems pointless, the reason for it is because I can easily implement a "checklist" by simply multiplying an integer on a map by -1, meaning it's already been checked(But I need to keep the value, so when I do the check, I can just -1 whatever I'm comparing it to). But I was wondering if that's too slow, I could make a separate boolean 2D array to check if the value was checked or not, or change my data structure into an array of structures so it could hold an int 1/0. I'm wondering what the best implementation will be-- doing the -1 operation itself a billion times will already total up to around 5 seconds not counting the rest of my program. But making a separate 1 billion square int array or creating a billion square struct doesn't seem to be the best way either.