If you only change a MyInt: Integer variable in one or more threads with one of the interlocked functions, lets say InterlockedIncrement, can we guarantee that after the InterlockedIncrement is executed, a plain read of the variable in any thread will return the latest updated value? Yes, no and why?
If not, is it possible to achieve that in Delphi? Note that I'm talking about only one variable, no need to worry about consistency about two or more variables.
The root problems and doubt seems essentially equal to the one in this SO post, but it is targeted at C# there, and I'm using Delphi 2007, so no access to volatile, neither of newer versions of Delphi as well. In that discussion, two major problems that seems to affect Delphi as well were raised:
- The cache of the processor reading the variable may not be updated.
- The compiler may optimize the code in a way that causes problems to read.
If this is really a problem, I'm very worried to use even a simple counter with InterlockedIncrement, or solutions like the lock-free initialization proposed in here, and would go to just plain Critical Sections of MultiReaderSingleWritter for safety.
Initial analysis
This is what I've found so far, but fell free to address the problems in other ways if appropriate, or even raising other unknown problems so the objective of the question can be achieved:
For the problem 1, I expected that the "full-fence" would also force the cache of other processors to be updated... but reading around it seems to not be the case. It looks that the cache would only be updated if a "read barrier" (or whatever it is called) would be called on the processor what will read the variable. If this is true, is there a way to call such "read barrier" in Delphi, just before reading the variable? Full-fence seems to imply both read and write barriers, so that would also be ok. Since that there is no InterlockedRead function according to the discussion in the first post, could we try (just speculating) to workaround using something like InterlockedCompareExchange (ugh... writing the variable to be able to read it, smells bad), or maybe "lock" low level assembly calls (that could be encapsulated)?
For the problem 2, Delphi optimizations would impact in this matter? Any way to avoid it?
Edit: The solution must work in D2007, but I'd like, preferably, to not make harder a possible future migration to newer Delphi, and use the same piece of code in ARM as well (this became clear to me after David's comments). So, if possible, it would be nice if solution is not coupled with x86/64 memory model. Would be nice if I need only to replace the plain Windows.pas interlocked functions to whatever provides the same interlocked functionality in newer Delphi/ARM, without the need to review the logic for ARM (one less concern).
But, Do the interlocked functions have enough abstraction from CPU architecture in this case? Problem 1 suggests that it doesn't, but I'm not sure if it would affect ARM Delphi. Any way around it, that keeps it simple and still allow relevant better performance over critical sections and similar sync objects?