I have a parquet file with 400+ columns, when I read it, the default datatypes attached to a lot of columns is String (may be due to the schema specified by someone else).
I was not able to find a parameter similar to
inferSchema=True' #for spark.read.parquet, present for spark.read.csv
I tried changing
mergeSchema=True #but it doesn't improve the results
To manually cast columns as float, I used
df_temp.select(*(col(c).cast("float").alias(c) for c in df_temp.columns))
this runs without error, but converts all the actual string column values to Null. I can't wrap this in a try, catch block as its not throwing any error.
Is there a way where i can check whether the columns contains only 'integer/ float' values and selectively cast those columns to float?