I've been trying to create a Fraction class as complete as possible, to learn C++, classes and related stuff on my own. Among other things, I wanted to ensure some level of "protection" against floating point exceptions and overflows.
Objective:
Avoid overflow and floating point exceptions in arithmetic operations found in common operations, expending the least time/memory. If avoiding is not possible, then at least detect it.
Also, the idea is to not cast to some bigger type. That creates a handful of problems (like there might be no bigger type)
Cases I've found:
Overflow on +, -, *, /, pow, root
Operations are mostly straightforward (
a
andb
areLong
):- a+b: if LONG_MAX - b > a then there's overflow. (not enough.
a
orb
might be negatives) - a-b: if LONG_MAX - a > -b then there's overflow. (Idem)
- a*b: if LONG_MAX / b > a then there's overflow. (if b != 0)
- a/b: might thrown SIGFPE if a << b or overflow if b << 0
- pow(a,b): if (pow(LONG_MAX, 1.0/b) > a then there's overflow.
- pow(a,1.0/b): Similar to a/b
- a+b: if LONG_MAX - b > a then there's overflow. (not enough.
Overflow on abs(x) when x = LONG_MIN (or equivalent)
This is funny. Every signed type has a range [-x-1,x] of possible values. abs(-x-1) = x+1 = -x-1 because overflow. This means there is a case where abs(x) < 0
- SIGFPE with big numbers divided by -1
Found when applying numerator/gcd(numerator,denominator). Sometimes gcd returned -1 and I got a floating point exception.
Easy fixes:
- On some operations is easy to check for overflow. If that's the case, I can always cast to double (with the risk of loosing precision over big integers). The idea is to find a better solution, without casting.
In Fraction arithmetics, sometimes I can do extra checking for simplifications: to solve a/b * c/d (co-primes), I can reduce to co-primes a/d and c/b first.
I can always do cascade if's asking ifI can create a function neg() that will avoid that overflowa
orb
are <0 or > 0. Not the prettiest. Besides that awful choice,T neg(T x){if (x > 0) return -x; else return x;},
- I can take abs(x) of gcd and any similar situation (anywhere x > LONG_MIN)
I'm not sure if 2. and 3. are the best solutions, but seems good enough. I'm posting those here so maybe anyone has a better answer.
Ugliest fixes
In most operations I need to do a lot of extra operations to check and avoid overflow. Here is were I'm pretty sure I can learn a thing or two.
Example:
Fraction Fraction::operator+(Fraction f){
double lcm = max(den,f.den);
lcm /= gcd(den, f.den);
lcm *= min(den,f.den);
// a/c + b/d = [a*(lcm/d) + b*(lcm/c)] / lcm //use to create normal fractions
// a/c + b/d = [a/lcm * (lcm/c)] + [b/lcm * (lcm/d)] //use to create fractions through double
double p = (double)num;
p *= lcm / (double)den;
double q = (double)f.num;
q *= lcm / (double)f.den;
if(lcm >= LONG_MAX || (p + q) >= LONG_MAX || (p + q) <= LONG_MIN){
//cerr << "Aproximating " << num << "/" << den << " + " << f.num << "/" << f.den << endl;
p = (double)num / lcm;
p *= lcm / (double)den;
q = (double)f.num / lcm;
q *= lcm / (double)f.den;
return Fraction(p + q);
}
else
return normal(p + q, (long)lcm);
}
Which is the best way to avoid overflow on these arithmetic operations?
Edit: There are a handfull of questions in this site quite similar, but those are not the same (detect instead of avoid, unsigned instead of signed, SIGFPE in specific no-related situations).
Checking all of them I found some answers that upon modification might be usefull to give a propper answer, like:
- Detect overflow in unsigned addition (not my case, I'm working with signed):
uint32_t x, y; uint32_t value = x + y; bool overflow = value < x; // Alternatively "value < y" should also work
Detect overflow in signed operations. This might be a bit too general, with a lot of branches, and doesn't discuss how to avoid overflow.
The CERT rules mentioned in an answer, are a good starting point, but again only discuss how to detect.
Other answers are too general and I wonder if there are any answer more specific for the cases I'm looking at.