For technical reasons that every programmer should be aware of, IEEE floating point numbers simply can't represent numbers precisely and will use the closest approximation they can when storing them (In fact the only fractions that can be stored perfectly have denominators that are powers of 2 (1/2, 1/4, 1/8, 1/16, etc. All other values are approximations). PHP has an ini value called "precision", which controls how many digits are considered significant WHEN OUTPUTTING floating point values. It defaults to 14, with any digits after that hidden.
However, the actual value stored may try to approximate the desired value with far more digits than that. If you change precision, you'll see what is really being stored.
php > $test = 0.1;
php > var_dump ($test);
php shell code:1:
double(0.1)
php > ini_set("precision", 100);
php > var_dump ($test);
php shell code:1:
double(0.1000000000000000055511151231257827021181583404541015625)
php > var_dump (0.25);
php shell code:1:
double(0.25)
php > var_dump (0.4);
php shell code:1:
double(0.40000000000000002220446049250313080847263336181640625)
What can you actually do about this? Not a great deal, this is just a consequence of how floating point works. You can try to avoid using floating point if you need exact values (for example when dealing with money amounts, store 3.99 as 399 pennies/cents instead of 3.99 pounds/dollars), or you can use the "bugnum" libraries that are available in PHP, GMP and BC_Math, but these are both tricky to use and have their own sets of gotchas. They can also be hard on storage and/or processor time. In most cases it's best to just live with it and be aware that when you're dealing with floating point you're not dealing with an exact representation.