I have two numpy arrays and each has shape of (10000,10000). One is value array and the other one is index array.
Value=np.random.rand(10000,10000)
Index=np.random.randint(0,1000,(10000,10000))
I want to make a list (or 1D numpy array) by summing all the "Value array" referring the "Index array". For example, for each index i, finding matching array index and giving it to value array as argument
for i in range(1000):
NewArray[i] = np.sum(Value[np.where(Index==i)])
However, This is too slow since I have to do this loop through 300,000 arrays. I tried to come up with some logical indexing method like
NewArray[Index] += Value[Index]
But it didn't work. The next thing I tried is using dictionary
for k, v in list(zip(Index.flatten(),Value.flatten())):
NewDict[k].append(v)
and
for i in NewDict:
NewDict[i] = np.sum(NewDict[i])
But it was slow too
Is there any smart way to speed up?